Characterization of new cristamonad species from kalotermitid termites including a novel genus, Runanympha.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 03 2021
31 03 2021
Historique:
received:
21
10
2020
accepted:
16
03
2021
entrez:
1
4
2021
pubmed:
2
4
2021
medline:
21
10
2021
Statut:
epublish
Résumé
Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.
Identifiants
pubmed: 33790354
doi: 10.1038/s41598-021-86645-w
pii: 10.1038/s41598-021-86645-w
pmc: PMC8012604
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7270Références
Nat Rev Microbiol. 2014 Mar;12(3):168-80
pubmed: 24487819
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Mol Biol Evol. 2015 Feb;32(2):406-21
pubmed: 25389205
J Eukaryot Microbiol. 1998 Nov-Dec;45(6):643-50
pubmed: 9864854
Mol Phylogenet Evol. 2009 Jul;52(1):217-24
pubmed: 19306937
Protist. 2010 Jul;161(3):400-33
pubmed: 20093080
Syst Biol. 2012 May;61(3):539-42
pubmed: 22357727
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
J Eukaryot Microbiol. 2013 May-Jun;60(3):313-6
pubmed: 23384430
J Eukaryot Microbiol. 2015 Jul-Aug;62(4):494-504
pubmed: 25600410
J Eukaryot Microbiol. 2015 Mar-Apr;62(2):255-9
pubmed: 25155455
Eur J Protistol. 1999 Oct 15;35(3):327-37
pubmed: 11543196
Mol Phylogenet Evol. 2002 Dec;25(3):545-56
pubmed: 12450758
Environ Entomol. 2018 Feb 8;47(1):184-195
pubmed: 29325010
J Eukaryot Microbiol. 2000 May-Jun;47(3):249-59
pubmed: 10847341
Insect Mol Biol. 1995 Nov;4(4):233-6
pubmed: 8825760
J Eukaryot Microbiol. 2007 Jan-Feb;54(1):93-9
pubmed: 17300526
Proc Natl Acad Sci U S A. 1923 Dec;9(12):424-8
pubmed: 16586922
Gene. 1988 Nov 30;71(2):491-9
pubmed: 3224833
J Cell Sci. 1976 May;20(3):619-38
pubmed: 1270532
Appl Environ Microbiol. 2015 Feb;81(3):1059-70
pubmed: 25452280
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Int J Syst Evol Microbiol. 2017 Sep;67(9):3570-3575
pubmed: 28840814
PLoS One. 2009 Aug 11;4(8):e6577
pubmed: 19668363
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363