Amazon tree dominance across forest strata.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
20
03
2020
accepted:
18
02
2021
pubmed:
3
4
2021
medline:
12
6
2021
entrez:
2
4
2021
Statut:
ppublish
Résumé
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.
Identifiants
pubmed: 33795854
doi: 10.1038/s41559-021-01418-y
pii: 10.1038/s41559-021-01418-y
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
757-767Références
Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).
doi: 10.1038/nclimate3109
Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).
doi: 10.1111/geb.12364
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
pubmed: 25788097
doi: 10.1038/nature14283
Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).
doi: 10.1146/annurev-environ-102017-030136
Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).
doi: 10.1038/s41558-018-0177-y
ter Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 29549 (2016).
pubmed: 27406027
pmcid: 4942782
doi: 10.1038/srep29549
ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 6156 (2013).
Wilson, E. O. Biodiversity research requires more boots on the ground. Nat. Ecol. Evol. 1, 1590–1591 (2017).
pubmed: 29066811
doi: 10.1038/s41559-017-0360-y
Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).
doi: 10.1038/s41558-019-0500-2
Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).
Draper, F. C. et al. Dominant tree species drive beta diversity patterns in western Amazonia. Ecology 100, 02636 (2019).
doi: 10.1002/ecy.2636
Pitman, N. C. A. et al. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82, 2101–2117 (2001).
doi: 10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2
Pitman, N. C. A., Silman, M. R. & Terborgh, J. W. Oligarchies in Amazonian tree communities: a ten-year review. Ecography 36, 114–123 (2013).
doi: 10.1111/j.1600-0587.2012.00083.x
Honorio Coronado, E. N. et al. Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences 6, 2719–2731 (2009).
doi: 10.5194/bg-6-2719-2009
Pitman, N. C. A. et al. Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography 37, 902–915 (2014).
doi: 10.1111/ecog.00774
Gentry, A. H. & Emmons, L. H. Geographical variation in fertility, phenology, and composition of the understory of neotropical forests. Biotropica 19, 216 (1987).
doi: 10.2307/2388339
Gentry, A. H. in Evolutionary Biology (eds Hecht, M. K. et al.) 1–84 (Springer, 1982).
Gentry, A. H. & Dodson, C. Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19, 149 (1987).
doi: 10.2307/2388737
Duque, A. et al. Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodivers. Conserv. 26, 669–686 (2017).
doi: 10.1007/s10531-016-1265-9
Duque, A., Sánchez, M., Cavelier, J. & Duivenvoorden, J. F. Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. J. Trop. Ecol. 18, 499–525 (2002).
doi: 10.1017/S0266467402002341
Arellano, G. et al. Oligarchic patterns in tropical forests: role of the spatial extent, environmental heterogeneity and diversity. J. Biogeogr. 43, 616–626 (2016).
doi: 10.1111/jbi.12653
Macía, M. J. & Svenning, J.-C. Oligarchic dominance in western Amazonian plant communities. J. Trop. Ecol. 21, 613–626 (2005).
doi: 10.1017/S0266467405002579
Vormisto, J., Svenning, J., Hall, P. & Balslev, H. Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J. Ecol. 92, 577–588 (2004).
doi: 10.1111/j.0022-0477.2004.00904.x
Burnham, R. J. Dominance, diversity and distribution of lianas in Yasuní, Ecuador: who is on top? J. Trop. Ecol. 18, 845–864 (2002).
doi: 10.1017/S0266467402002559
Farrior, C. E., Bohlman, S. A., Hubbell, S. & Pacala, S. W. Dominance of the suppressed: power-law size structure in tropical forests. Science 351, 155–157 (2016).
pubmed: 26744402
doi: 10.1126/science.aad0592
Baker, T. R. et al. Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests. J. Ecol. 104, 497–506 (2016).
pubmed: 27609991
pmcid: 4991291
doi: 10.1111/1365-2745.12529
ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).
pubmed: 17006512
doi: 10.1038/nature05134
Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).
doi: 10.5194/bg-9-2203-2012
Dexter, K. & Chave, J. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees. PeerJ 4, e2402 (2016).
pubmed: 27651991
pmcid: 5018673
doi: 10.7717/peerj.2402
Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. R. Soc. Lond. B. 283, 1844 (2019).
Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. Lond. B 359, 311–329 (2004).
doi: 10.1098/rstb.2003.1433
Thomson, F. J. et al. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99, 1299–1307 (2011).
doi: 10.1111/j.1365-2745.2011.01867.x
Thomson, F. J. et al. Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytol. 217, 407–415 (2018).
pubmed: 28833231
doi: 10.1111/nph.14735
Dexter, K. G. et al. Dispersal assembly of rain forest tree communities across the Amazon basin. Proc. Natl Acad. Sci. USA 114, 2645–2650 (2017).
pubmed: 28213498
pmcid: 5347625
doi: 10.1073/pnas.1613655114
Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).
pubmed: 29744992
doi: 10.1111/ele.12974
Baker, T. R. et al. Fast demographic traits promote high diversification rates of Amazonian trees. Ecol. Lett. 17, 527–536 (2014).
pubmed: 24589190
pmcid: 4285998
doi: 10.1111/ele.12252
Coelho de Souza, F. et al. Evolutionary diversity is associated with wood productivity in Amazonian forests. Nat. Ecol. Evol. 3, 1754–1761 (2019).
pubmed: 31712699
doi: 10.1038/s41559-019-1007-y
Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).
pubmed: 31980639
pmcid: 6981197
doi: 10.1038/s41598-019-55621-w
Damasco, G., Daly, D. C., Vicentini, A. & Fine, P. V. A. Reestablishment of Protium cordatum (Burseraceae) based on integrative taxonomy. Taxon 68, 34–46 (2019).
doi: 10.1002/tax.12022
Roncal, R. et al. Palm diversification in two geologically contrasting regions of western Amazonia. J. Biogeogr. 42, 1503–1513 (2015).
doi: 10.1111/jbi.12518
Draper, F. C. et al. Quantifying tropical plant diversity requires an integrated technological approach. Trends Ecol. Evol. 35, 1100–1109 (2020).
pubmed: 32912632
doi: 10.1016/j.tree.2020.08.003
Junk, W. J. et al. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31, 623–640 (2011).
doi: 10.1007/s13157-011-0190-7
Adeney, J. M., Christensen, N. L., Vicentini, A. & Cohn-Haft, M. White-sand ecosystems in Amazonia. Biotropica 48, 7–23 (2016).
doi: 10.1111/btp.12293
Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244 (2003).
pubmed: 12522248
doi: 10.1126/science.1078037
Baraloto, C. et al. Rapid simultaneous estimation of aboveground biomass and tree diversity across neotropical forests: a comparison of field inventory methods. Biotropica 45, 288–298 (2013).
doi: 10.1111/btp.12006
Phillips, O. L. et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 19, 629–645 (2003).
doi: 10.1017/S0266467403006035
Magnusson, W. E. et al. RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotrop. 5, 19–24 (2005).
doi: 10.1590/S1676-06032005000300002
Draper, F. C. et al. Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. J. Ecol. 107, 696–710 (2019).
doi: 10.1111/1365-2745.13067
Tuomisto, H. et al. Discovering floristic and geoecological gradients across Amazonia. J. Biogeogr. 46, 1734–1748 (2019).
doi: 10.1111/jbi.13627
Swenson, N. G. The assembly of tropical tree communities—the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36, 264–276 (2013).
doi: 10.1111/j.1600-0587.2012.00121.x
Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000).
pubmed: 10856198
doi: 10.1086/303378
Baraloto, C. et al. Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J. Ecol. 100, 690–701 (2012).
doi: 10.1111/j.1365-2745.2012.01966.x
Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492 (2010).
pubmed: 19925555
doi: 10.1111/j.1469-8137.2009.03092.x
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
pubmed: 26595275
doi: 10.1038/nature15539
Gonzalez-Caro, S. et al. Scale-dependent drivers of the phylogenetic structure and similarity of tree communities in northwestern Amazonia. J. Ecol. 109, 888–899 (2021).
Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).
pubmed: 28254935
doi: 10.1126/science.aal0157
McMichael, C. N. H., Matthews-Bird, F., Farfan-Rios, W. & Feeley, K. J. Ancient human disturbances may be skewing our understanding of Amazonian forests. Proc. Natl Acad. Sci. USA 114, 522–527 (2017).
pubmed: 28049821
pmcid: 5255623
doi: 10.1073/pnas.1614577114
Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5, 171 (2018).
doi: 10.3389/fevo.2017.00171
Chamberlain, S. et al. taxize: taxonomic information from around the web. R package version 0.9.95 (2019).
Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl Acad. Sci. USA 114, 10695–10700 (2017).
pubmed: 28923966
pmcid: 5635885
doi: 10.1073/pnas.1706756114
ter Steege, H. et al. Towards a dynamic list of Amazonian tree species. Sci. Rep. 9, 3501 (2019).
pubmed: 30837572
pmcid: 6401171
doi: 10.1038/s41598-019-40101-y
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).
doi: 10.1029/2008EO100001
Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the Globe Version 4 (CGIAR Consortium for Spatial Information, 2008); http//srtm.csi.cgiar.org
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
pubmed: 26646728
pmcid: 4672685
doi: 10.1038/sdata.2015.66
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
QGIS Development Team QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2019).
Wickham, H., Romain, F., Henry, L. & Müller, K. dplyr: a grammar of data manipulation. R package version 0.8.3 (2019).
Wickham, H. & Henry, L. tidyr: easily tidy data with ‘spread()’ and ‘gather()’ functions. R package version 0.8.3 (2019).
Henry, L. & Wickham, H. purrr: functional programming tools. R package version 0.8.3 (2019).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
doi: 10.1111/2041-210X.12628
Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).
doi: 10.1111/ecog.01814
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).
Honorio Coronado, E. N. et al. Phylogenetic diversity of Amazonian tree communities. Divers. Distrib. 21, 1295–1307 (2015).
doi: 10.1111/ddi.12357
Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6 (2019).
Chen, J. et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28, 2106–2113 (2012).
pubmed: 22711789
pmcid: 3413390
doi: 10.1093/bioinformatics/bts342
Chen, J. GUniFrac: generalized UniFrac distances. R package version 1.1 (2018).