Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle.
AMP-Activated Protein Kinases
/ genetics
Adipose Tissue, Brown
/ metabolism
Aminoimidazole Carboxamide
/ administration & dosage
Animals
Benzimidazoles
/ administration & dosage
Blood Glucose
/ metabolism
Diet, High-Fat
Female
Glucose Tolerance Test
Insulin
/ metabolism
Male
Metabolic Clearance Rate
/ drug effects
Mice
Mice, Knockout
Models, Animal
Muscle Fibers, Skeletal
/ metabolism
Pyridines
/ administration & dosage
Ribonucleotides
/ administration & dosage
Thermogenesis
/ drug effects
5-aminoimidazole-4-carboxamide riboside
AMP-activated protein kinase
Beige adipose tissue
Brown adipose tissue
MK-8722
TBC1D1
Journal
Molecular metabolism
ISSN: 2212-8778
Titre abrégé: Mol Metab
Pays: Germany
ID NLM: 101605730
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
05
03
2021
revised:
21
03
2021
accepted:
26
03
2021
pubmed:
3
4
2021
medline:
8
3
2022
entrez:
2
4
2021
Statut:
ppublish
Résumé
The metabolic master-switch AMP-activated protein kinase (AMPK) mediates insulin-independent glucose uptake in muscle and regulates the metabolic activity of brown and beige adipose tissue (BAT). The regulatory AMPKγ3 isoform is uniquely expressed in skeletal muscle and potentially in BAT. Herein, we investigated the role that AMPKγ3 plays in mediating skeletal muscle glucose uptake and whole-body glucose clearance in response to small-molecule activators that act on AMPK via distinct mechanisms. We also assessed whether γ3 plays a role in adipose thermogenesis and browning. Global AMPKγ3 knockout (KO) mice were generated. A systematic whole-body, tissue, and molecular phenotyping linked to glucose homeostasis was performed in γ3 KO and wild-type (WT) mice. Glucose uptake in glycolytic and oxidative skeletal muscle ex vivo as well as blood glucose clearance in response to small molecule AMPK activators that target the nucleotide-binding domain of the γ subunit (AICAR) and allosteric drug and metabolite (ADaM) site located at the interface of the α and β subunit (991, MK-8722) were assessed. Oxygen consumption, thermography, and molecular phenotyping with a β3-adrenergic receptor agonist (CL-316,243) treatment were performed to assess BAT thermogenesis, characteristics, and function. Genetic ablation of γ3 did not affect body weight, body composition, physical activity, and parameters associated with glucose homeostasis under chow or high-fat diet. γ3 deficiency had no effect on fiber-type composition, mitochondrial content and components, or insulin-stimulated glucose uptake in skeletal muscle. Glycolytic muscles in γ3 KO mice showed a partial loss of AMPKα2 activity, which was associated with reduced levels of AMPKα2 and β2 subunit isoforms. Notably, γ3 deficiency resulted in a selective loss of AICAR-, but not MK-8722-induced blood glucose-lowering in vivo and glucose uptake specifically in glycolytic muscle ex vivo. We detected γ3 in BAT and found that it preferentially interacts with α2 and β2. We observed no differences in oxygen consumption, thermogenesis, morphology of BAT and inguinal white adipose tissue (iWAT), or markers of BAT activity between WT and γ3 KO mice. These results demonstrate that γ3 plays a key role in mediating AICAR- but not ADaM site binding drug-stimulated blood glucose clearance and glucose uptake specifically in glycolytic skeletal muscle. We also showed that γ3 is dispensable for β3-adrenergic receptor agonist-induced thermogenesis and browning of iWAT.
Identifiants
pubmed: 33798773
pii: S2212-8778(21)00073-9
doi: 10.1016/j.molmet.2021.101228
pmc: PMC8381060
pii:
doi:
Substances chimiques
Benzimidazoles
0
Blood Glucose
0
Insulin
0
MK-8722
0
Pyridines
0
Ribonucleotides
0
Aminoimidazole Carboxamide
360-97-4
Prkag3 protein, mouse
EC 2.7.11.1
AMP-Activated Protein Kinases
EC 2.7.11.31
AICA ribonucleotide
F0X88YW0YK
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
101228Subventions
Organisme : CIHR
ID : 201709FDN-CEBA-116200
Pays : Canada
Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier GmbH.. All rights reserved.
Références
J Clin Invest. 2010 Jul;120(7):2355-69
pubmed: 20577053
Diabetologia. 1996 Oct;39(10):1148-55
pubmed: 8897001
Biochem J. 2017 May 9;474(10):1741-1754
pubmed: 28302767
EMBO J. 2005 May 18;24(10):1810-20
pubmed: 15889149
Biochem J. 2014 Jun 15;460(3):363-75
pubmed: 24665903
Nat Commun. 2013;4:3017
pubmed: 24352254
Cell Metab. 2017 May 2;25(5):1147-1159.e10
pubmed: 28467931
J Biol Chem. 2007 Nov 9;282(45):32549-60
pubmed: 17855357
Mol Metab. 2014 Apr 21;3(4):490-4
pubmed: 24944909
J Biol Chem. 2010 Nov 26;285(48):37198-209
pubmed: 20855892
J Biol Chem. 1996 Nov 1;271(44):27879-87
pubmed: 8910387
FASEB J. 2014 Jul;28(7):3211-24
pubmed: 24652947
Nat Rev Drug Discov. 2019 Jul;18(7):527-551
pubmed: 30867601
J Biol Chem. 2005 Nov 25;280(47):39033-41
pubmed: 16186119
Cell Metab. 2013 Oct 1;18(4):556-66
pubmed: 24093679
Am J Physiol Cell Physiol. 2004 Feb;286(2):C283-92
pubmed: 14512293
IUBMB Life. 2009 Jan;61(1):18-26
pubmed: 18798311
Biochem J. 2016 Mar 1;473(5):581-92
pubmed: 26635351
Science. 2017 Aug 4;357(6350):507-511
pubmed: 28705990
Front Physiol. 2018 Feb 21;9:122
pubmed: 29515462
FASEB J. 2011 Jan;25(1):337-47
pubmed: 20881209
Structure. 2014 Aug 5;22(8):1161-1172
pubmed: 25066137
FASEB J. 2019 Nov;33(11):12374-12391
pubmed: 31404503
Diabetologia. 2013 Sep;56(9):1898-906
pubmed: 23835523
Mol Metab. 2018 May;11:160-177
pubmed: 29525407
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7
pubmed: 12444247
Biochem J. 2016 Jan 15;473(2):189-99
pubmed: 26542978
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16092-7
pubmed: 21896769
Diabetes. 2002 Jul;51(7):2199-206
pubmed: 12086950
Physiology (Bethesda). 2006 Feb;21:48-60
pubmed: 16443822
Science. 2011 Jun 17;332(6036):1433-5
pubmed: 21680840
Am J Physiol Endocrinol Metab. 2004 Feb;286(2):E194-200
pubmed: 14559719
Mol Cell Biol. 2012 Jul;32(14):2837-48
pubmed: 22586267
Nat Commun. 2016 Mar 08;7:10912
pubmed: 26952388
Nat Med. 2013 Dec;19(12):1649-54
pubmed: 24185692
J Biol Chem. 2008 Dec 19;283(51):35724-34
pubmed: 18838377
Nat Commun. 2020 Oct 9;11(1):5102
pubmed: 33037211
Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E715-22
pubmed: 17077344
Diabetologia. 2017 Feb;60(2):336-345
pubmed: 27826658
Curr Diab Rep. 2018 Aug 17;18(10):80
pubmed: 30120579
Chem Biol. 2008 Nov 24;15(11):1220-30
pubmed: 19022182
Genes Dev. 2011 Sep 15;25(18):1895-908
pubmed: 21937710
Cell Metab. 2016 Jul 12;24(1):118-29
pubmed: 27411013
Am J Physiol Cell Physiol. 2009 Oct;297(4):C1041-52
pubmed: 19657063
J Biol Chem. 2004 Sep 10;279(37):38441-7
pubmed: 15247217
Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E706-E719
pubmed: 27577855
Nature. 2010 Dec 2;468(7324):653-8
pubmed: 21124450
Nature. 2011 Apr 14;472(7342):230-3
pubmed: 21399626
Nat Rev Mol Cell Biol. 2018 Feb;19(2):121-135
pubmed: 28974774
Chem Biol. 2015 Jun 18;22(6):705-11
pubmed: 26091167
Sci Signal. 2017 Feb 14;10(466):
pubmed: 28196906
FASEB J. 2018 Apr;32(4):1741-1777
pubmed: 29242278
J Biol Chem. 2007 Nov 9;282(45):32539-48
pubmed: 17728241
Mol Cell. 2001 May;7(5):1085-94
pubmed: 11389854
Chem Biol. 2014 Jul 17;21(7):866-79
pubmed: 25036776
J Biol Chem. 2018 Jun 8;293(23):8874-8885
pubmed: 29695504
J Biol Chem. 2004 Jan 9;279(2):1070-9
pubmed: 14573616
Nat Med. 2018 Sep;24(9):1395-1406
pubmed: 30150719
Cell Metab. 2006 Jun;3(6):403-16
pubmed: 16753576
Science. 2005 Dec 9;310(5754):1642-6
pubmed: 16308421
FASEB J. 2015 May;29(5):1725-38
pubmed: 25609422