Occipital Cortical Calcifications in Cerebral Amyloid Angiopathy.


Journal

Stroke
ISSN: 1524-4628
Titre abrégé: Stroke
Pays: United States
ID NLM: 0235266

Informations de publication

Date de publication:
05 2021
Historique:
pubmed: 6 4 2021
medline: 5 1 2022
entrez: 5 4 2021
Statut: ppublish

Résumé

Cortical calcifications have been reported in patients with cerebral amyloid angiopathy (CAA), although their prevalence and pathophysiology are unknown. We investigated the frequency of calcifications on computed tomography, their association with intracerebral hemorrhage (ICH) and their coexistence with a striped pattern of the occipital cortex reflecting microcalcifications on ultra-high-field 7T-magnetic resonance imaging in Dutch-type hereditary CAA (D-CAA) and sporadic CAA. We included D-CAA mutation carriers with a proven APP (amyloid precursor protein) mutation or ≥1 lobar ICH and ≥1 first-degree relative with D-CAA and sporadic CAA patients with probable CAA according to the modified Boston criteria. D-CAA carriers were regarded symptomatic when they had a history of symptomatic ICH. We assessed the presence, location, and progression of calcifications and their association with ICH and the striped occipital cortex. We found cortical calcifications in 15/81 (19% [95% CI, 11–29]) D-CAA mutation carriers (15/69 symptomatic and 0/12 presymptomatic) and in 1/59 (2% [95% CI, 0–9]) sporadic CAA patients. Calcifications were all bilateral located in the occipital lobes. In 3/15 (20%) of the symptomatic D-CAA patients the calcifications progressed over a period up to 10 years. There was evidence of an association between cortical calcifications and new ICH development (hazard ratio, 7.1 [95% CI, 0.9–54.9], log-rank P=0.03). In 7/25 D-CAA symptomatic carriers in whom a 7T-magnetic resonance imaging was performed, a striped pattern of the occipital cortex was present; in 3/3 (100%) of those with calcifications on computed tomography and 4/22 (18%) of those without calcifications. Occipital cortical calcifications are frequent in D-CAA but seem to be rare in sporadic CAA. Their absence in presymptomatic carriers and their association with ICH might suggest that they are a marker for advanced CAA. Cortical calcifications on computed tomography seem to be associated with the striped occipital cortex on 7T-magnetic resonance imaging which may possibly represent an early stage of calcification.

Sections du résumé

Background and Purpose
Cortical calcifications have been reported in patients with cerebral amyloid angiopathy (CAA), although their prevalence and pathophysiology are unknown. We investigated the frequency of calcifications on computed tomography, their association with intracerebral hemorrhage (ICH) and their coexistence with a striped pattern of the occipital cortex reflecting microcalcifications on ultra-high-field 7T-magnetic resonance imaging in Dutch-type hereditary CAA (D-CAA) and sporadic CAA.
Methods
We included D-CAA mutation carriers with a proven APP (amyloid precursor protein) mutation or ≥1 lobar ICH and ≥1 first-degree relative with D-CAA and sporadic CAA patients with probable CAA according to the modified Boston criteria. D-CAA carriers were regarded symptomatic when they had a history of symptomatic ICH. We assessed the presence, location, and progression of calcifications and their association with ICH and the striped occipital cortex.
Results
We found cortical calcifications in 15/81 (19% [95% CI, 11–29]) D-CAA mutation carriers (15/69 symptomatic and 0/12 presymptomatic) and in 1/59 (2% [95% CI, 0–9]) sporadic CAA patients. Calcifications were all bilateral located in the occipital lobes. In 3/15 (20%) of the symptomatic D-CAA patients the calcifications progressed over a period up to 10 years. There was evidence of an association between cortical calcifications and new ICH development (hazard ratio, 7.1 [95% CI, 0.9–54.9], log-rank P=0.03). In 7/25 D-CAA symptomatic carriers in whom a 7T-magnetic resonance imaging was performed, a striped pattern of the occipital cortex was present; in 3/3 (100%) of those with calcifications on computed tomography and 4/22 (18%) of those without calcifications.
Conclusions
Occipital cortical calcifications are frequent in D-CAA but seem to be rare in sporadic CAA. Their absence in presymptomatic carriers and their association with ICH might suggest that they are a marker for advanced CAA. Cortical calcifications on computed tomography seem to be associated with the striped occipital cortex on 7T-magnetic resonance imaging which may possibly represent an early stage of calcification.

Identifiants

pubmed: 33813865
doi: 10.1161/STROKEAHA.120.033286
doi:

Substances chimiques

Amyloid beta-Protein Precursor 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1851-1855

Auteurs

Ingeborg Rasing (I)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Sabine Voigt (S)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Emma A Koemans (EA)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Erik van Zwet (E)

Biomedical Data Sciences (E.v.Z.), Leiden University Medical Center, the Netherlands.

Paul C de Kruijff (PC)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Thijs W van Harten (TW)

Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.

Ellis S van Etten (ES)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Sanneke van Rooden (S)

Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.

Louise van der Weerd (L)

Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.
Human Genetics (L.v.d.W.), Leiden University Medical Center, the Netherlands.

Mark A van Buchem (MA)

Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.

Matthias J P van Osch (MJP)

Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.

Steven M Greenberg (SM)

Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.).

Marianne A A van Walderveen (MAA)

Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.

Gisela M Terwindt (GM)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Marieke J H Wermer (MJH)

Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH