Inhibitory effects of orthosilicic acid on osteoclastogenesis in RANKL-stimulated RAW264.7 cells.
RAW264.7 cells
bioceramics
bone metabolism
orthosilicic acid
osteoclast differentiation
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
30
01
2021
received:
04
09
2020
accepted:
24
03
2021
pubmed:
6
4
2021
medline:
8
3
2022
entrez:
5
4
2021
Statut:
ppublish
Résumé
Numerous studies have reported on the positive effects of silicon (Si) on bone metabolism, particularly on the stimulatory effects of Si on osteoblast cells and on bone formation. Inhibitory effects of Si on osteoclast formation and bone resorption have also been demonstrated in vitro and are suggested to be mediated indirectly via stromal and osteoblast cells. Direct effects of Si on osteoclasts have been less studied and mostly using soluble Si, but no characterisation of the Si treatment solutions are provided. The aims of the present study were to (a) further investigate the direct inhibitory effects of Si on osteoclastogenesis in RANKL-stimulated RAW264.7 cells, (b) determine at what stage during osteoclastogenesis Si acts upon, and (c) determine if these effects can be attributed to the biologically relevant soluble orthosilicic acid specie. Our results demonstrate that silicon, at 50 μg/ml (or 1.8 mM), does not affect cell viability but directly inhibits the formation of TRAP+ multinucleated cells and the expression of osteoclast phenotypic genes in RAW264.7 cells. The inhibitory effect of Si was clearly associated with the early stages (first 24 hr) of osteoclastogenesis. Moreover, these effects can be attributed to the soluble orthosilicic acid specie.
Substances chimiques
Culture Media
0
RANK Ligand
0
Silicic Acid
1343-98-2
Neutral Red
261QK3SSBH
Silicon
Z4152N8IUI
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1967-1978Subventions
Organisme : Medical Research Council
ID : MR/R005699/1
Pays : United Kingdom
Informations de copyright
© 2021 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
Références
Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137(11 Suppl):2507S-12S.
Carlisle EM. Silicon: an essential element for the chick. Science. 1972;178(4061):619-621.
Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature. 1972;239(5371):333-334.
Hott M, de Pollak C, Modrowski D, Marie PJ. Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int. 1993;53(3):174-179.
Rico H, Gallego-Lago JL, Hernandez ER, et al. Effect of silicon supplement on osteopenia induced by ovariectomy in rats. Calcif Tissue Int. 2000;66(1):53-55.
Nielsen FH, Poellot R. Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats. J Trace Elem Exp Med. 2004;17(3):137-149.
Jugdaohsingh R, Watson AI, Bhattacharya P, van Lenthe GH, Powell JJ. Positive association between serum silicon levels and bone mineral density in female rats following oral silicon supplementation with monomethylsilanetriol. Osteoporos Int. 2015;26(4):1405-1415.
Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham offspring cohort. J Bone Miner Res. 2004;19(2):297-307.
Macdonald HM, Hardcastle AC, Jugdaohsingh R, Fraser WD, Reid DM, Powell JJ. Dietary silicon interacts with oestrogen to influence bone health: evidence from the Aberdeen prospective osteoporosis screening study. Bone. 2012;50(3):681-687.
Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging. 2007;11(2):94-97.
Sjöberg S. Silica in aqueous environments. J Non-Cryst Solids. 1996;196(Suppl C):51-57.
Powell JJ, McNaughton SA, Jugdaohsingh R, et al. A provisional database for the silicon content of foods in the United Kingdom. Br J Nutr. 2005;94(5):804-812.
Reffitt DM, Jugdaohsingh R, Thompson RP, Powell JJ. Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem. 1999;76(2):141-147.
Bisse E, Epting T, Beil A, Lindinger G, Lang H, Wieland H. Reference values for serum silicon in adults. Anal Biochem. 2005;337(1):130-135.
Magnusson C, Jugdaohsingh R, Hulthen L, Westerlund A, Powell JJ, Ransjo M. Urinary excretion of silicon in men, non-pregnant women, and pregnant women: a cross-sectional study. Biol Trace Elem Res. 2020;194(2):321-327.
Dobbie JW, Smith MJ. The silicon content of body fluids. Scott Med J. 1982;27(1):17-19.
Garneau AP, Carpentier GA, Marcoux AA, et al. Aquaporins mediate silicon transport in humans. PLoS One. 2015;10(8):e0136149.
Ratcliffe S, Jugdaohsingh R, Vivancos J, et al. Identification of a mammalian silicon transporter. Am J Physiol Cell Physiol. 2017;312(5):C550-C61.
Mladenovic Z, Sahlin-Platt A, Andersson B, Johansson A, Bjorn E, Ransjo M. In vitro study of the biological interface of bio-Oss: implications of the experimental setup. Clin Oral Implants Res. 2013;24(3):329-335.
Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006;17(11):967-978.
Tadjoedin ES, de Lange GL, Holzmann PJ, Kulper L, Burger EH. Histological observations on biopsies harvested following sinus floor elevation using a bioactive glass material of narrow size range. Clin Oral Implants Res. 2000;11(4):334-344.
Mladenovic Z, Johansson A, Willman B, Shahabi K, Bjorn E, Ransjo M. Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater. 2014;10(1):406-418.
Reffitt DM, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127-135.
Costa-Rodrigues J, Reis S, Castro A, Fernandes MH. Bone anabolic effects of soluble Si: in vitro studies with human Mesenchymal stem cells and CD14+ osteoclast precursors. Stem Cells Int. 2016;2016:5653275.
Tsigkou O, Jones JR, Polak JM, Stevens MM. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials. 2009;30(21):3542-3550.
Kim EJ, Bu SY, Sung MK, Choi MK. Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells. Biol Trace Elem Res. 2013;152(1):105-112.
Schroder HC, Wang XH, Wiens M, et al. Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem. 2012;113(10):3197-3206.
Ma W, Wang F, You Y, et al. Ortho-silicic acid inhibits RANKL-induced Osteoclastogenesis and reverses Ovariectomy-induced bone loss in vivo. Biol Trace Elem Res. 2020;199:1864-1876.
Beck GR Jr, Ha SW, Camalier CE, et al. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine. 2012;8(6):793-803.
Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149(4):325-341.
Collin-Osdoby P, Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol. 2012;816:187-202.
Sripanyakorn S, Jugdaohsingh R, Mander A, Davidson SL, Thompson RP, Powell JJ. Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion. J Bone Miner Res. 2009;24(8):1380-1388.
Sripanyakorn S, Jugdaohsingh R, Dissayabutr W, Anderson SH, Thompson RP, Powell JJ. The comparative absorption of silicon from different foods and food supplements. Br J Nutr. 2009;102(6):825-834.
Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125-1131.
Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-622.
Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.
Kalia P, Brooks RA, Kinrade SD, et al. Adsorption of amorphous silica nanoparticles onto hydroxyapatite surfaces differentially alters surfaces properties and adhesion of human osteoblast cells. PLoS One. 2016;11(2):e0144780.
Vis B, Hewitt RE, Faria N, et al. Non-functionalized Ultrasmall silica nanoparticles directly and size-selectively activate T cells. ACS Nano. 2018;12(11):10843-54.
Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging. 2007;11(2):99-110.
Zhuoer H. Silicon measurement in bone and other tissues by electrothermal atomic absorption spectrometry. J Anal at Spectrom. 1994;9(1):11-15.
Adler AJ, Etzion Z, Berlyne GM. Uptake, distribution, and excretion of 31silicon in normal rats. Am J Physiol. 1986;251(6 Pt 1):E670-3.
Chappell HF, Jugdaohsingh R, Powell JJ. Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO4(4). J R Soc Interface. 2020;17(167):20200145.
Quignard S, Coradin T, Powell JJ, Jugdaohsingh R. Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids Surf B Biointerfaces. 2017;155:530-537.
Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci (Landmark Ed). 2011;16:21-30.
Vaananen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys. 2008;473(2):132-138.
Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473(2):201-209.
Bruzzaniti A, Baron R. Molecular regulation of osteoclast activity. Rev Endocr Metab Disord. 2006;7(1-2):123-139.
Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013;92(10):860-867.
Yagi M, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202(3):345-351.