Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system.
Journal
The Review of scientific instruments
ISSN: 1089-7623
Titre abrégé: Rev Sci Instrum
Pays: United States
ID NLM: 0405571
Informations de publication
Date de publication:
01 Mar 2021
01 Mar 2021
Historique:
entrez:
6
4
2021
pubmed:
7
4
2021
medline:
7
4
2021
Statut:
ppublish
Résumé
In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton-Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM