Dopamine D
Autophagy
Dopamine D5 receptor
Hypertension
Mitochondria
Reactive oxygen species
Journal
Hypertension research : official journal of the Japanese Society of Hypertension
ISSN: 1348-4214
Titre abrégé: Hypertens Res
Pays: England
ID NLM: 9307690
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
23
06
2019
accepted:
03
12
2019
revised:
10
11
2019
pubmed:
7
4
2021
medline:
28
12
2021
entrez:
6
4
2021
Statut:
ppublish
Résumé
Overproduction of reactive oxygen species (ROS) plays an important role in the pathogenesis of hypertension. The dopamine D
Identifiants
pubmed: 33820956
doi: 10.1038/s41440-021-00646-w
pii: 10.1038/s41440-021-00646-w
pmc: PMC8369611
mid: NIHMS1732618
doi:
Substances chimiques
Drd5 protein, mouse
0
Reactive Oxygen Species
0
Receptors, Dopamine D5
137750-35-7
Cyclic AMP
E0399OZS9N
Fenoldopam
INU8H2KAWG
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
628-641Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK039308
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL023081
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK090918
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 NS002263
Pays : United States
Organisme : NHLBI NIH HHS
ID : R37 HL023081
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK119652
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL092196
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL074940
Pays : United States
Références
Araujo M, Wilcox CS. Oxidative stress in hypertension: role of the kidney. Antioxid Redox Signal. 2014;20:74–101.
pubmed: 23472618
pmcid: 3880923
doi: 10.1089/ars.2013.5259
Loperena R, Harrison DG. Oxidative stress and hypertensive diseases. Med Clin North Am. 2017;101:169–93.
pubmed: 27884227
doi: 10.1016/j.mcna.2016.08.004
Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31:631–41.
pubmed: 25936489
doi: 10.1016/j.cjca.2015.02.008
Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen species. Hypertension. 2009;53:885–92.
pubmed: 19398655
doi: 10.1161/HYPERTENSIONAHA.109.130054
Zhang MZ, Harris RC. Antihypertensive mechanisms of intra-renal dopamine. Curr Opin Nephrol Hypertens. 2015;24:117–22.
pubmed: 25594544
pmcid: 4651846
doi: 10.1097/MNH.0000000000000104
Asghar M, Tayebati SK, Lokhandwala MF, Hussain T. Potential dopamine-1 receptor stimulation in hypertension management. Curr Hypertens Rep. 2011;13:294–302.
pubmed: 21633929
doi: 10.1007/s11906-011-0211-1
Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension. 2011;57:11–7.
pubmed: 21098313
doi: 10.1161/HYPERTENSIONAHA.110.157727
Allayee H, de Bruin TW, Michelle Dominguez K, Cheng LS, Ipp E, Cantor RM, et al. Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p. Hypertension. 2001;38:773–8.
pubmed: 11641285
doi: 10.1161/hy1001.092617
Cohn DH, Shohat T, Yahav M, Ilan T, Rechavi G, King L, et al. A locus for an autosomal dominant form of progressive renal failure and hypertension at chromosome 1q21. Am J Hum Genet. 2000;67:647–51.
pubmed: 10930359
pmcid: 1287524
doi: 10.1086/303051
Yang Z, Asico LD, Yu P, Wang Z, Jones JE, Escano CS, et al. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R96–104.
pubmed: 16352863
doi: 10.1152/ajpregu.00434.2005
Saez F, Hong NJ, Garvin JL. Luminal flow induces NADPH oxidase 4 translocation to the nuclei of thick ascending limbs. Physiol Rep. 2016;4:e12724.
pubmed: 27033446
pmcid: 4814881
doi: 10.14814/phy2.12724
Yang Q, Wu FR, Wang JN, Gao L, Jiang L, Li HD, et al. Nox4 in renal diseases: an update. Free Radic Biol Med. 2018;124:466–72.
pubmed: 29969717
doi: 10.1016/j.freeradbiomed.2018.06.042
Haque MZ, Majid DS. Reduced renal responses to nitric oxide synthase inhibition in mice lacking the gene for gp91phox subunit of NAD(P)H oxidase. Am J Physiol Ren Physiol. 2008;295:F758–64.
doi: 10.1152/ajprenal.90291.2008
Ryter SW, Bhatia D, Choi ME. Autophagy: a lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal. 2019;30:138–59.
pubmed: 29463101
doi: 10.1089/ars.2018.7518
Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157:65–75.
pubmed: 24679527
pmcid: 4020175
doi: 10.1016/j.cell.2014.02.049
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19:349–64.
pubmed: 29618831
doi: 10.1038/s41580-018-0003-4
Woodall BP, Gustafsson AB. Autophagy—a key pathway for cardiac health and longevity. Acta Physiol. 2018;20:e13074.
doi: 10.1111/apha.13074
Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J. 2017;284:42–55.
pubmed: 27758044
doi: 10.1111/febs.13932
Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, Aleman L, Chiong M, Garcia L, et al. Autophagy and oxidative stress in non-communicable diseases: a matter of the inflammatory state. Free Radic Biol Med. 2018;124:61–78.
pubmed: 29859344
doi: 10.1016/j.freeradbiomed.2018.05.084
Wible DJ, Bratton SB. Reciprocity in ROS and autophagic signaling. Curr Opin Toxicol. 2018;7:28–36.
pubmed: 29457143
doi: 10.1016/j.cotox.2017.10.006
Gildea JJ, Wang X, Jose PA, Felder RA. Differential D1 and D5 receptor regulation and degradation of the angiotensin type 1 receptor. Hypertension. 2008;51:360–6.
pubmed: 18172057
doi: 10.1161/HYPERTENSIONAHA.107.100099
Jean-Charles PY, Snyder JC, Shenoy SK. Ubiquitination and deubiquitination of G protein-coupled receptors. Prog Mol Biol Transl Sci. 2016;141:1–55.
pubmed: 27378754
doi: 10.1016/bs.pmbts.2016.05.001
Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, et al. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J Clin Investig. 2008;118:2180–9.
pubmed: 18464932
pmcid: 2373421
doi: 10.1172/JCI33637C1
Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, et al. Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci. 2002;22:10801–10.
pubmed: 12486173
pmcid: 6758465
doi: 10.1523/JNEUROSCI.22-24-10801.2002
Sanada H, Jose PA, Hazen-Martin D, Yu PY, Xu J, Bruns DE, et al. Dopamine-1 receptor coupling defect in renal proximal tubule cells in hypertension. Hypertension. 1999;33:1036–42.
pubmed: 10205244
doi: 10.1161/01.HYP.33.4.1036
O’Connell DP, Botkin SJ, Ramos SI, Sibley DR, Ariano MA, Felder RA, et al. Localization of dopamine D1A receptor protein in rat kidneys. Am J Physiol. 1995;268:F1185–97.
pubmed: 7611459
Ennis RC, Asico LD, Armando I, Yang J, Feranil JB, Jurgens JA, et al. Dopamine D
doi: 10.1152/ajprenal.00119.2014
Wang X, Li F, Jose PA, Ecelbarger CM. Reduction of renal dopamine receptor expression in obese Zucker rats: role of sex and angiotensin II. Am J Physiol Ren Physiol. 2010;299:F1164–70.
doi: 10.1152/ajprenal.00604.2009
Li H, Li HF, Felder RA, Periasamy A, Jose PA. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy. J Biomed Opt. 2008;13:031206.
pubmed: 18601530
doi: 10.1117/1.2943286
Lee H, Abe Y, Lee I, Shrivastav S, Crusan AP, Huttemann M, et al. Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int. 2014;85:561–9.
pubmed: 24132210
doi: 10.1038/ki.2013.397
Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, et al. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem. 2005;280:6094–100.
pubmed: 15557277
doi: 10.1074/jbc.M411335200
Polster BM, Nicholls DG, Ge SX, Roelofs BA. Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol. 2014;547:225–50.
pubmed: 25416361
pmcid: 4484872
doi: 10.1016/B978-0-12-801415-8.00013-8
Votyakova TV, Reynolds IJ. Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Arch Biochem Biophys. 2004;431:138–44.
pubmed: 15464736
doi: 10.1016/j.abb.2004.07.025
Lochner A, Moolman JA. The many faces of H89: a review. Cardiovasc Drug Rev. 2006;24:261–74.
pubmed: 17214602
doi: 10.1111/j.1527-3466.2006.00261.x
Gimenez-Xavier P, Francisco R, Santidrian AF, Gil J, Ambrosio S. Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology. 2009;30:658–65.
pubmed: 19410601
doi: 10.1016/j.neuro.2009.04.007
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–55.
pubmed: 29940786
pmcid: 6103682
doi: 10.1080/15548627.2018.1474314
Kirkman DL, Muth BJ, Ramick MG, Townsend RR, Edwards DG. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am J Physiol Ren Physiol. 2018;314:F423–9.
doi: 10.1152/ajprenal.00321.2017
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol. 2019;16:33–55.
pubmed: 30177752
pmcid: 6349394
doi: 10.1038/s41569-018-0074-0
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circ Res. 2016;119:e39–75.
pubmed: 27418630
pmcid: 5446086
doi: 10.1161/RES.0000000000000110
Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem. 2012;19:2504–20.
pubmed: 22489713
pmcid: 3412204
doi: 10.2174/092986712800493057
Mason RP. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol. 2016;8:422–9.
pubmed: 27203617
pmcid: 4878322
doi: 10.1016/j.redox.2016.04.003
Kalyanaraman B, Dranka BP, Hardy M, Michalski R, Zielonka J. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes–the ultimate approach for intra- and extracellular superoxide detection. Biochim Biophys Acta. 2014;1840:739–44.
pubmed: 23668959
doi: 10.1016/j.bbagen.2013.05.008
Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA. 2006;103:15038–43.
pubmed: 17015830
pmcid: 1586181
doi: 10.1073/pnas.0601945103
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.
pubmed: 19061483
doi: 10.1042/BJ20081386
Bleier L, Drose S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta. 2013;1827:1320–31.
pubmed: 23269318
doi: 10.1016/j.bbabio.2012.12.002
Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem. 2017;292:16804–9.
pubmed: 28842493
pmcid: 5641882
doi: 10.1074/jbc.R117.789271
Daiber A, Di Lisa F, Oelze M, Kröller-Schön S, Steven S, Schulz E, et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharm. 2017;174:1670–89.
doi: 10.1111/bph.13403
Li H, Han W, Villar VA, Keever LB, Lu Q, Hopfer U, et al. D1-like receptors regulate NADPH oxidase activity and subunit expression in lipid raft microdomains of renal proximal tubule cells. Hypertension. 2009;53:1054–61.
pubmed: 19380616
doi: 10.1161/HYPERTENSIONAHA.108.120642
Yang S, Yang Y, Yu P, Yang J, Jiang X, Villar VA, et al. Dopamine D1 and D5 receptors differentially regulate oxidative stress through paraoxonase 2 in kidney cells. Free Radic Res. 2015;49:397–410.
pubmed: 25740199
pmcid: 5261865
doi: 10.3109/10715762.2015.1006215
Sulaiman D, Li J, Devarajan A, Cunningham CM, Li M, Fishbein GA, et al. Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway. J Mol Cell Cardiol. 2019;129:154–64.
pubmed: 30802459
doi: 10.1016/j.yjmcc.2019.02.008
Li Z, Ji X, Wang W, Liu J, Liang X, Wu H, et al. Ammonia induces autophagy through dopamine receptor D3 and mTOR. PLoS ONE. 2016;11:e0153526.
pubmed: 27077655
pmcid: 4831814
doi: 10.1371/journal.pone.0153526
Shin JH, Park SJ, Kim ES, Jo YK, Hong J, Cho DH. Sertindole, a potent antagonist at dopamine D2 receptors, induces autophagy by increasing reactive oxygen species in SH-SY5Y neuroblastoma cells. Biol Pharm Bull. 2012;35:1069–75.
pubmed: 22791154
doi: 10.1248/bpb.b12-00009
Yan H, Li WL, Xu JJ, Zhu SQ, Long X, Che JP. D2 dopamine receptor antagonist raclopride induces non-canonical autophagy in cardiac myocytes. J Cell Biochem. 2013;114:103–10.
pubmed: 22886761
doi: 10.1002/jcb.24306
Dolma S, Selvadurai HJ, Lan X, Lee L, Kushida M, Voisin V, et al. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell. 2016;29:859–73.
pubmed: 27300435
pmcid: 5968455
doi: 10.1016/j.ccell.2016.05.002
Jose PA, Eisner GM, Drago J, Carey RM, Felder RA. Dopamine receptor signaling defects in spontaneous hypertension. Am J Hypertens. 1996;9:400–5.
pubmed: 8722444
doi: 10.1016/0895-7061(95)00351-7
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.
pubmed: 9457173
doi: 10.1152/physrev.1998.78.1.189
Gildea JJ, Shah I, Weiss R, Casscells ND, McGrath HE, Zhang J, et al. HK-2 human renal proximal tubule cells as a model for G protein-coupled receptor kinase type 4-mediated dopamine 1 receptor uncoupling. Hypertension. 2010;56:505–11.
pubmed: 20660820
doi: 10.1161/HYPERTENSIONAHA.110.152256
Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441:523–40.
pubmed: 22187934
doi: 10.1042/BJ20111451
Pyo JO, Nah J, Kim HJ, Lee HJ, Heo J, Lee H, et al. Compensatory activation of ERK1/2 in Atg5-deficient mouse embryo fibroblasts suppresses oxidative stress-induced cell death. Autophagy. 2008;4:315–21.
pubmed: 18196969
doi: 10.4161/auto.5525
Tian Y, Kuo CF, Sir D, Wang L, Govindarajan S, Petrovic LM, et al. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ. 2015;22:1025–34.
pubmed: 25526090
doi: 10.1038/cdd.2014.201
Diakopoulos KN, Lesina M, Wormann S, Song L, Aichler M, Schild L, et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology. 2015;148:626–38.
pubmed: 25497209
doi: 10.1053/j.gastro.2014.12.003
Harada S, Nakagawa T, Yokoe S, Edogawa S, Takeuchi T, Inoue T, et al. Autophagy deficiency diminishes indomethacin-induced intestinal epithelial cell damage through activation of the ERK/Nrf2/HO-1 pathway. J Pharm Exp Ther. 2015;355:353–61.
doi: 10.1124/jpet.115.226431
Jones DC, Gunasekar PG, Borowitz JL, Isom GE. Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells. J Neurochem. 2000;74:2296–304.
pubmed: 10820189
doi: 10.1046/j.1471-4159.2000.0742296.x
Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, et al. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy. 2017;13:1404–19.
pubmed: 28613975
pmcid: 5584849
doi: 10.1080/15548627.2017.1328347
Yadav A, Vallabu S, Arora S, Tandon P, Slahan D, Teichberg S, et al. Ang II promotes autophagy in podocytes. Am J Physiol Cell Physiol. 2010;299:C488–96.
pubmed: 20484657
pmcid: 2928643
doi: 10.1152/ajpcell.00424.2009
Sachse A, Wolf G. Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol. 2007;18:2439–46.
pubmed: 17687073
doi: 10.1681/ASN.2007020149
Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, et al. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension. 2005;45:804–10.
pubmed: 15699451
doi: 10.1161/01.HYP.0000155212.33212.99
Haller M, Hock AK, Giampazolias E, Oberst A, Green DR, Debnath J, et al. Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity. Autophagy. 2014;10:2269–78.
pubmed: 25629932
doi: 10.4161/15548627.2014.981914
Jiang S, Park DW, Gao Y, Ravi S, Darley-Usmar V, Abraham E, et al. Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of amp-activated protein kinase. Cell Signal. 2015;27:1186–97.
pubmed: 25728513
pmcid: 4380640
doi: 10.1016/j.cellsig.2015.02.024
Livnat-Levanon N, Glickman MH. Ubiquitin-proteasome system and mitochondria - reciprocity. Biochim Biophys Acta. 2011;1809:80–7.
pubmed: 20674813
doi: 10.1016/j.bbagrm.2010.07.005
Omar B, Zmuda-Trzebiatowska E, Manganiello V, Göransson O, Degerman E. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal. 2009;21:760–6.
pubmed: 19167487
pmcid: 3576575
doi: 10.1016/j.cellsig.2009.01.015
Decara J, Rivera P, Arrabal S, Vargas A, Serrano A, Pavón FJ, et al. Cooperative role of the glucagon-like peptide-1 receptor and β3-adrenergic-mediated signalling on fat mass reduction through the downregulation of PKA/AKT/AMPK signalling in the adipose tissue and muscle of rats. Acta Physiol. 2018;222:e13008.
doi: 10.1111/apha.13008
Valsecchi F, Ramos-Espiritu LS, Buck J, Levin LR, Manfredi G. cAMP and mitochondria. Physiology. 2013;28:199–209.
pubmed: 23636265
pmcid: 3870303
doi: 10.1152/physiol.00004.2013
Torres-Quiroz F, Filteau M, Landry CR. Feedback regulation between autophagy and PKA. Autophagy. 2015;11:1181–3.
pubmed: 26046386
pmcid: 4590648
doi: 10.1080/15548627.2015.1055440
Lee YJ, Shu MS, Kim JY, Kim YH, Sim KH, Sung WJ, et al. Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway. PLoS ONE. 2019;14:e0211415.
pubmed: 30695051
pmcid: 6350983
doi: 10.1371/journal.pone.0211415
Chen ML, Yi L, Jin X, Liang XY, Zhou Y, Zhang T, et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy. 2013;9:2033–45.
pubmed: 24145604
doi: 10.4161/auto.26336
Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, et al. PKA regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol Cell. 2016;62:371–84.
pubmed: 27153535
doi: 10.1016/j.molcel.2016.03.037
Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharm. 2015;98:119–31.
pubmed: 26300059
doi: 10.1016/j.bcp.2015.08.096
Yu P, Sun M, Villar VA, Zhang Y, Weinman EJ, Felder RA, et al. Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells. Cell Signal. 2014;26:2521–9.
pubmed: 25049074
pmcid: 4166567
doi: 10.1016/j.cellsig.2014.07.003