Strange eyes, stranger brains: exceptional diversity of optic lobe organization in midwater crustaceans.
brain evolution
compound eyes
hyperiid amphipods
neuroanatomy
optic lobes
Journal
Proceedings. Biological sciences
ISSN: 1471-2954
Titre abrégé: Proc Biol Sci
Pays: England
ID NLM: 101245157
Informations de publication
Date de publication:
14 04 2021
14 04 2021
Historique:
entrez:
7
4
2021
pubmed:
8
4
2021
medline:
21
5
2021
Statut:
ppublish
Résumé
Nervous systems across Animalia not only share a common blueprint at the biophysical and molecular level, but even between diverse groups of animals the structure and neuronal organization of several brain regions are strikingly conserved. Despite variation in the morphology and complexity of eyes across malacostracan crustaceans, many studies have shown that the organization of malacostracan optic lobes is highly conserved. Here, we report results of divergent evolution to this 'neural ground pattern' discovered in hyperiid amphipods, a relatively small group of holopelagic malacostracan crustaceans that possess an unusually wide diversity of compound eyes. We show that the structure and organization of hyperiid optic lobes has not only diverged from the malacostracan ground pattern, but is also highly variable between closely related genera. Our findings demonstrate a variety of trade-offs between sensory systems of hyperiids and even within the visual system alone, thus providing evidence that selection has modified individual components of the central nervous system to generate distinct combinations of visual centres in the hyperiid optic lobes. Our results provide new insights into the patterns of brain evolution among animals that live under extreme conditions.
Identifiants
pubmed: 33823669
doi: 10.1098/rspb.2021.0216
pmc: PMC8059609
doi:
Banques de données
figshare
['10.6084/m9.figshare.c.5359411']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20210216Références
Arthropod Struct Dev. 2017 Jul;46(4):537-551
pubmed: 28344111
Mol Phylogenet Evol. 2013 Apr;67(1):28-37
pubmed: 23319084
Cell Tissue Res. 1978 Jan 17;186(2):337-49
pubmed: 203400
J Comp Neurol. 2018 Jan 1;526(1):109-119
pubmed: 28884472
Front Zool. 2013 Feb 19;10(1):7
pubmed: 23421712
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Jun;190(6):449-68
pubmed: 15069573
Biol Rev Camb Philos Soc. 2004 Aug;79(3):671-712
pubmed: 15366767
J Cogn Neurosci. 1989 Fall;1(4):291-301
pubmed: 23971981
Curr Opin Neurobiol. 2016 Dec;41:113-121
pubmed: 27662055
J Neurosci. 2018 Aug 1;38(31):6933-6948
pubmed: 30012687
J Exp Biol. 2011 May 1;214(Pt 9):1586-98
pubmed: 21490266
Curr Biol. 2016 Oct 24;26(20):R989-R1000
pubmed: 27780074
Nature. 2000 Jun 29;405(6790):1055-8
pubmed: 10890446
Mol Phylogenet Evol. 2020 Feb;143:106664
pubmed: 31669816
J Neurosci. 2020 Jul 15;40(29):5561-5571
pubmed: 32499380
J Comp Neurol. 2020 Jun 15;528(9):1561-1587
pubmed: 31792962
Nature. 2012 Oct 11;490(7419):258-61
pubmed: 23060195
Curr Biol. 2013 Aug 5;23(15):1389-98
pubmed: 23831291
Cell Tissue Res. 2017 Aug;369(2):255-271
pubmed: 28389816
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Aug;188(7):539-51
pubmed: 12209342
Nature. 2019 Sep;573(7775):586-589
pubmed: 31511691
Curr Biol. 2015 Feb 16;25(4):473-8
pubmed: 25601548
Z Zellforsch Mikrosk Anat. 1970;107(3):343-60
pubmed: 5448473
Neural Dev. 2018 Jun 7;13(1):11
pubmed: 29875010
Proc Biol Sci. 2018 Aug 22;285(1885):
pubmed: 30135168
BMC Neurosci. 2015 Apr 07;16:19
pubmed: 25880533
J Comp Neurol. 2003 Dec 8;467(2):150-72
pubmed: 14595766
J Neurosci. 2015 Apr 29;35(17):6654-66
pubmed: 25926445
Tissue Cell. 1977;9(3):521-36
pubmed: 929580
Science. 1995 Jun 16;268(5217):1578-84
pubmed: 7777856
Front Comput Neurosci. 2013 Jul 04;7:89
pubmed: 23847525
Dev Neurobiol. 2018 Jan;78(1):3-14
pubmed: 29082670
J Neurophysiol. 2007 Oct;98(4):2414-28
pubmed: 17715192