Current trends in diabetes mellitus database research in Japan.
antidiabetic drug
cardiovascular disease
complications
database research
diabetes
pharmaco-epidemiology
Journal
Diabetes, obesity & metabolism
ISSN: 1463-1326
Titre abrégé: Diabetes Obes Metab
Pays: England
ID NLM: 100883645
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
revised:
14
01
2021
received:
11
06
2020
accepted:
24
01
2021
entrez:
9
4
2021
pubmed:
10
4
2021
medline:
10
7
2021
Statut:
ppublish
Résumé
With the widespread use of electronic medical records and administrative claims databases, analytic results from so-called real-world data have become increasingly important in healthcare decision-making. Diabetes mellitus is a heterogeneous condition that involves a broad spectrum of patients. Real-world database studies have been recognised as a powerful tool to understand the impact of current practices on clinical courses and outcomes, such as long-term glucose control, development of microvascular or macro-vascular diseases, and mortality. Diabetes is also a major global health issue and poses a significant social and economic burden worldwide. Therefore, it is critical to understand the epidemiology, clinical course, treatment reality, and long-term outcomes of diabetes to determine realistic solutions to a variety of disease-related issues that we are facing. In the present review, we summarise the healthcare system and large-scale databases currently available in Japan, introduce the results from recent database studies involving Japanese patients with diabetes, and discuss future opportunities and challenges for the use of databases in the management of diabetes.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3-18Subventions
Organisme : Ono Pharmaceutical Co., Ltd.
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
International Diabetes Federation. IDF diabetes atlas - 9th edition. 2019. Available at: https://www.diabetesatlas.org/en/ Accessed: December 12, 2019.
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diab Res Clin Practice. 2019;157:107843.
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-1053.
Morimoto A, Nishimura R, Tajima N. Trends in the epidemiology of patients with diabetes in Japan. JMAJ. 2010;53(1):36-40.
Goto A, Noda M, Inoue M, Goto M, Charvat H. Increasing number of people with diabetes in Japan: is this trend real? Int Med (Tokyo, Japan). 2016;55(14):1827-1830.
Sinclair A, Saeedi P, Kaundal A, Karuranga S, Malanda B, Williams R. Diabetes and global ageing among 65-99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2020;108078.
The Ministry of Health, Labour, and Welfare. The National Health and Nutrition Examination Survey 2018. Available at: https://www.mhlw.go.jp/stf/newpage_08789.html. Accessed: January 20, 2020 (in Japanese).
Seuring T, Archangelidi O, Suhrcke M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. Pharmacoeconomics. 2015;33(8):811-831.
Kusunoki-Tsuji C, Araki SI, Kume S, et al. Impact of obesity on annual medical expenditures and diabetes care in Japanese patients with type 2 diabetes mellitus. J Diab Investig. 2018;9(4):776-781.
Roglic G. WHO Global report on diabetes: A summary. 2016;1(1):3-8.
Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368(9548):1681-1688.
Nanditha A, Ma RC, Ramachandran A, et al. Diabetes in Asia and the Pacific: Implications for the Global Epidemic. Diabetes Care. 2016;39(3):472-485.
Nyamdorj R, Pitkaniemi J, Tuomilehto J, et al. Ethnic comparison of the association of undiagnosed diabetes with obesity. Int J Obesity (2005). 2010;34(2):332-339.
Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;1281:64-91.
Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev. 2002;3(3):141-146.
Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22(12):1164-1171.
Wang J, Thornton JC, Russell M, Burastero S, Heymsfield S, Pierson RN Jr. Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements. Am J Clin Nutr. 1994;60(1):23-28.
Lee ET, Lu M, Bennett PH, Keen H. Vascular disease in younger-onset diabetes: comparison of European, Asian and American Indian cohorts of the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44(Suppl 2):S78-S81.
Clarke PM, Glasziou P, Patel A, et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: a multicountry comparative analysis. PLoS Med. 2010;7(2):e1000236.
Noto H, Tsujimoto T, Noda M. Significantly increased risk of cancer in diabetes mellitus patients: A meta-analysis of epidemiological evidence in Asians and non-Asians. J Diab Investig. 2012;3(1):24-33.
Bank IEM, Gijsberts CM, Teng T-HK, et al. Prevalence and clinical significance of diabetes in Asian versus white patients with heart failure. JACC: Heart Failure. 2017;5(1):14-24.
Tromp J, Tay WT, Ouwerkerk W, et al. Multimorbidity in patients with heart failure from 11 Asian regions: A prospective cohort study using the ASIAN-HF registry. PLoS Med. 2018;15(3):e1002541.
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Eng J Med. 2015;373(22):2117-2128.
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644-657.
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347-357.
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-322.
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834-1844.
Rogers AS. Adverse drug events: identification and attribution. Drug Intell Clin Pharm. 1987;21(11):915-920.
Elze MC, Gregson J, Baber U, et al. Comparison of propensity score methods and covariate adjustment. J Am Coll Cardiol. 2017;69(3):345-357.
Kuss O, Blettner M, Börgermann J. Propensity score: an alternative method of analyzing treatment effects. Dtsch Arztebl Int. 2016;113(35-36):597-603.
Scheier LM. Methods for approximating random assignment: Regression discontinuity and propensity scores. In: Peterson P, Baker E, McGaw B, eds. International Encyclopedia of Education. Third ed. Oxford: Elsevier; 2010:104-110.
U.S. Department of Health and Human Services Food and Drug Administration. Use of real-world evidence to support regulatory decision-making for medical devices: Guidance for Industry and Food and Drug Administration Staff. 2017. Abailable at: https://www.fda.gov/media/99447/download. Accessed: January 16. 2020.
Matsuda S, Fujimori K. The Claim Database in Japan. Asian Pacific J Dis Manag. 2014;6(3-4):55-59.
Ishii M. DRG/PPS and DPC/PDPS as prospective payment systems. Japan Med Assoc J. 2012;55(4):279-291.
Matsuda S, Fujimori K, Kuwabara K, Ishikawa KB, Fushimi K. Diagnosis procedure combination as an infrastructure for the clinical study. Asian Pacific J Dis Manag. 2011;5(4):81-87.
Takahashi Y, Nishida Y, Asai S. Utilization of health care databases for pharmacoepidemiology. Eur J Clin Pharmacol. 2012;68(2):123-129.
Waithera L, Muhia J, Songole R. Impact of Electronic Medical Records on Healthcare Delivery in Kisii Teaching and Referral Hospital. Med Clin Rev. 2017;3(4):21.
Pharmacoepidemiology & Database Taskforce, Japanese Society for Pharmacoepidemiology. Survey of Japanese databases in Japan available for clinical/pharmacoepidemiology. Available at: http://www.jspe.jp/committee/020/0210/. Accessed: December 18, 2019.
JMDC Claims Database: JMDC. Available at: https://www.jmdc.co.jp/en/jmdc-claims-database. Accessed: April 4, 2020.
Kimura S, Sato T, Ikeda S, Noda M, Nakayama T. Development of a database of health insurance claims: standardization of disease classifications and anonymous record linkage. J Epidemiol. 2010;20(5):413-419.
Yasunaga H, Yamana H, Rodes Sanchez M, Towse A. Data Governance Arrangements for Real-World Evidence in Japan. OHE Consulting Report. London: Office of Health Economics. Available at: https://www.ohe.org/publications/data-governance-arrangements-real-world-evidence-japan. Accessed: April 4, 2020; 2020.
NDB. Available at https://www.mhlw.go.jp/content/12401000/000520125.pdf. Accessed: December 12, 2019 (in Japanese).
Shinichiro K, Tatsuya N, Tomoya M, et al. National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB): Outline and Patient-Matching Technique. bioRxiv. 2018;280008. https://doi.org/10.1101/280008.
Nakamura M. Utilization of MDV Data and Data Quality Control. Japanese J Pharmacoepidemiology/Yakuzai ekigaku. 2016;21(1):23-25.
Introducing MDV Database. Available at: https://www.mdv.co.jp/mdv_database/english/. Accessed: April 4, 2020.
Sugiyama T, Miyo K, Tsujimoto T, et al. Design of and rationale for the Japan Diabetes compREhensive database project based on an Advanced electronic Medical record System (J-DREAMS). Diabetol Int. 2017;8(4):375-382.
Ishii M, Miyo K, Sugiyama T, Ohsugi M, Ueki K. Development of patient state model to overview Clinical Registry Database. Stud Health Technol Inform. 2019;264:1492-1493.
Nakagawa N, Sofue T, Kanda E, et al. J-CKD-DB: a nationwide multicentre electronic health record-based chronic kidney disease database in Japan. Sci Rep. 2020;10(1):7351.
Iihara K, Nishimura K, Kada A, et al. The impact of comprehensive stroke care capacity on the hospital volume of stroke interventions: A Nationwide Study in Japan: J-ASPECT Study. J Stroke Cerebrovasc Dis. 2014;23(5):1001-1018.
Sasaki T, Izawa M, Okada Y. Current trends in health insurance systems: OECD countries vs. Japan. Neurologia medico-chirurgica. 2015;55(4):267-275.
Hussey P, Anderson GF. A comparison of single- and multi-payer health insurance systems and options for reform. Health Policy. 2003;66(3):215-228.
Sekimoto M, Ii M. Supplier-induced demand for chronic disease care in Japan: multilevel analysis of the association between physician density and physician-patient encounter frequency. Value in Health Regional Issues. 2015;6:103-110.
Kabeya Y, Uchida J, Toyoda M, et al. Factors affecting consultation length in a Japanese diabetes practice. Diabetes Res Clin Pract. 2017;126:54-59.
Donker GA, Fleming DM, Schellevis FG, Spreeuwenberg P. Differences in treatment regimes, consultation frequency and referral patterns of diabetes mellitus in general practice in five European countries. Fam Pract. 2004;21(4):364-369.
Oi H, Nakamura H. The Advance of Utilizing Real World Data Under Pharmaceutical Regulatory Schemes Regarding the Approval Review and Post-marketing Safety Assessment. Japanese J Pharmacoepidemiology/Yakuzai ekigaku. 2019;24:2-10.
Yamaguchi M, Inomata S, Harada S, et al. Establishment of the MID-NET([R]) medical information database network as a reliable and valuable database for drug safety assessments in Japan. Pharmacoepidemiol Drug Saf. 2019;28(10):1395-1404.
Hasegawa M, Komoto S, Shiroiwa T, Fukuda T. Formal implementation of cost-effectiveness evaluations in Japan: A Unique Health Technology Assessment System. Value Health. 2020;23(1):43-51.
Kamae I, Thwaites R, Hamada A, Fernandez JL. Health technology assessment in Japan: a work in progress. J Med Econ. 2020;23(4):317-322.
Kamae I, New HTA. Policy in Japan. In: Kamae I, ed. Health Technology Assessment in Japan: Policy, Pharmacoeconomic Methods and Guidelines, Value, and Beyond. Singapore: Springer Singapore; 2019:25-62.
Sone H, Tanaka S, Iimuro S, et al. Long-term lifestyle intervention lowers the incidence of stroke in Japanese patients with type 2 diabetes: a nationwide multicentre randomised controlled trial (the Japan Diabetes Complications Study). Diabetologia. 2010;53(3):419-428.
Kobayashi M, Yamazaki K, Hirao K, et al. The status of diabetes control and antidiabetic drug therapy in Japan-A cross-sectional survey of 17,000 patients with diabetes mellitus (JDDM 1). Diabetes Res Clin Pract. 2006;73(2):198-204.
Tajima N, Nishimura R, Izumi K, et al. A large-scale, observational study to investigate the current status of diabetes complications and their prevention in Japan: research outline and baseline data for type 2 diabetes-JDCP study 1. Diabetology Int. 2015;6(4):243-251.
Yazaki Y, Kadowaki T. Combating diabetes and obesity in Japan. Nat Med. 2006;12(1):73-74.
Heianza Y, Hara S, Arase Y, et al. HbA1c 5.7-6.4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet. 2011;378(9786):147-155.
Heianza Y, Arase Y, Tsuji H, et al. Metabolically healthy obesity, presence or absence of fatty liver, and risk of type 2 diabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 20 (TOPICS 20). J Clin Endocrinol Metab. 2014;99(8):2952-2960.
Heianza Y, Suzuki A, Fujihara K, et al. Impact on short-term glycaemic control of initiating diabetes care versus leaving diabetes untreated among individuals with newly screening-detected diabetes in Japan. J Epidemiol Community Health. 2014;68(12):1189-1195.
Morrison F, Shubina M, Turchin A. Encounter frequency and serum glucose level, blood pressure, and cholesterol level control in patients with diabetes mellitus. Arch Intern Med. 2011;171(17):1542-1550.
"Taitounyōubyougokanennkeikaku"[5-year strategy for diabetes], Abailable at: http://www.fa.kyorin.co.jp/jds/uploads/plan_5years_4th.pdf. Accessed: November 16. 2020 (in Japanese). 2020 [Available from: http://www.fa.kyorin.co.jp/jds/uploads/plan_5years_4th.pdf.
Study report from Type 1 Diabetes (T1D) Study Group. Available at: https://mhlw-grants.niph.go.jp/niph/search/NIDD02.do?resrchNum=201709008A. Accessed: December 12, 2019 (in Japanese).
Nishimura R, Izumi K, Hayashino Y, et al. A large-scale observational study to investigate the current status of diabetes complications and their prevention in Japan: research outline and baseline data for type 1 diabetes-JDCP study 2. Diabetology International. 2016;7(1):4-11.
Shikata K, Kodera R, Utsunomiya K, et al. Prevalence of albuminuria and renal dysfunction, and related clinical factors in Japanese patients with diabetes: The Japan Diabetes Complication and its Prevention prospective study 5. J Diabetes Investig. 2020;11(2):325-332.
Yokoyama H, Araki S-I, Kawai K, et al. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diabetes Res Care. 2018;6(1):e000521-e.
9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98-s110.
Buse JB, Wexler DJ, Tsapas A, et al. Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2019;2019:dci190066.
Araki E, Goto A, Kondo T, et al. Japanese Clinical Practice Guideline for Diabetes 2019. Diabetology Int. 2020;11(3):165-223.
Morita Y, Murayama H, Odawara M, Bauer M. Treatment patterns of drug-naive patients with type 2 diabetes mellitus: a retrospective cohort study using a Japanese hospital database. Diabetol Metab Syndr. 2019;11:90.
Nishimura R, Kato H, Kisanuki K, et al. Treatment patterns, persistence and adherence rates in patients with type 2 diabetes mellitus in Japan: a claims-based cohort study. BMJ Open. 2019;9(3):e025806.
Tajima T, Suzuki M, Kojima S, Suzuki M. Future potential and current issues of real world data (RWD) in pharmaceutical companies. Clin Pharmacol Therapy. 2019;29(1):15-22.
Tanaka S, Tanaka S, Iimuro S, et al. Cohort Profile: The Japan Diabetes Complications Study: a long-term follow-up of a randomised lifestyle intervention study of type 2 diabetes. Int J Epidemiol. 2014;43(4):1054-1062.
Yamamoto M, Fujihara K, Ishizawa M, et al. Overt proteinuria, moderately reduced eGFR and their combination are predictive of severe diabetic retinopathy or diabetic macular edema in diabetes. Invest Ophthalmol Vis Sci. 2019;60(7):2685-2689.
Ueki K, Sasako T, Okazaki Y, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):951-964.
Osawa T, Fujihara K, Harada M, et al. Higher pulse pressure predicts initiation of dialysis in Japanese patients with diabetes. Diabetes Metab Res Rev. 2019;35(3):e3120.
Yamamoto M, Fujihara K, Ishizawa M, et al. Pulse pressure is a stronger predictor than systolic blood pressure for severe eye diseases in diabetes mellitus. J Am Heart Assoc. 2019;8(8):e010627.
Tanaka H, Sugiyama T, Ihana-Sugiyama N, Ueki K, Kobayashi Y, Ohsugi M. Changes in the quality of diabetes care in Japan between 2007 and 2015: A repeated cross-sectional study using claims data. Diabetes Res Clin Pract. 2019;149:188-199.
Stone MA, Charpentier G, Doggen K, et al. Quality of care of people with type 2 diabetes in eight European countries. Diabetes Care. 2013;36(9):2628-2638.
Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-2222.
Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6(13):1246-1258.
Panzram G. Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1987;30(3):123-131.
Fox CS, Coady S, Sorlie PD, et al. Trends in cardiovascular complications of diabetes. JAMA. 2004;292(20):2495-2499.
Hayashino Y, Izumi K, Okamura S, et al. Duration of diabetes and types of diabetes therapy in Japanese patients with type 2 diabetes: The Japan Diabetes Complication and its Prevention prospective study 3 (JDCP study 3). J Diabetes Investig. 2017;8(2):243-249.
Yokoyama H, Araki SI, Kawai K, et al. The prognosis of patients with type 2 diabetes and nonalbuminuric diabetic kidney disease is not always poor: Implication of the Effects of Coexisting Macrovascular Complications (JDDM 54). Diabetes Care. 2020;43(5):1102-1110.
Sone H, Tanaka S, Tanaka S, et al. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in japanese patients with type 2 diabetes: Subanalysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metabol. 2011;96(11):3448-3456.
Yamada-Harada M, Fujihara K, Osawa T, et al. Relationship between number of multiple risk factors and coronary artery disease risk with and without diabetes mellitus. J Clin Endocrinol Metab. 2019;104(11):5084-5090.
Kitazawa M, Fujihara K, Osawa T, et al. Risk of coronary artery disease according to glucose abnormality status and prior coronary artery disease in Japanese men. Metabolism. 2019;101:153991.
Fujihara K, Igarashi R, Yamamoto M, et al. Impact of glucose tolerance status on the development of coronary artery disease among working-age men. Diabetes Metab. 2017;43(3):261-264.
Fujihara K, Matsubayashi Y, Yamamoto M, et al. Impact of body mass index and metabolic phenotypes on coronary artery disease according to glucose tolerance status. Diabetes Metab. 2017;43(6):543-546.
Harada M, Fujihara K, Osawa T, et al. Association of treatment-achieved HbA1c with incidence of coronary artery disease and severe eye disease in diabetes patients. Diabetes Metab. 2020;46(4):331-334.
Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363(15):1410-1418.
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323.
Birkeland KI, Bodegard J, Eriksson JW, et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: a large multinational cohort study. Diabetes Obes Metab. 2020;22:1607-1618.
Ito Y, Van Schyndle J, Nishimura T, Sugitani T, Kimura T. Real-World Effectiveness of Sodium Glucose Co-Transporter-2 Inhibitors in Japanese Patients with Diabetes Mellitus. Diabetes Therapy. 2019;10(6):2219-2231.
Ito Y, Van Schyndle J, Nishimura T, Sugitani T, Kimura T. Characteristics of Patients with Diabetes Initiating Sodium Glucose Co-transporter-2 Inhibitors (SGLT2i): Real-World Results from Three Administrative Databases in Japan. Diabetes Therapy. 2019;10(2):549-562.
Persson F, Nyström T, Jørgensen ME, et al. Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: A multinational observational study. Diabetes Obes Metab. 2018;20(2):344-351.
Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation. 2017;136(3):249-259.
Patorno E, Pawar A, Franklin JM, et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation. 2019;139(25):2822-2830.
Schernthaner G, Karasik A, Abraitienė A, et al. Evidence from routine clinical practice: EMPRISE provides a new perspective on CVOTs. Cardiovasc Diabetol. 2019;18(1):115.
Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL 2 Study. J Am Coll Cardiol. 2018;71(23):2628-2639.
Takeuchi M, Ogura M, Minoura T, Inagaki N, Kawakami K. Comparative effectiveness of sodium-glucose cotransporter-2 inhibitors versus other classes of glucose-lowering medications on renal outcome in type 2 diabetes. Mayo Clin Proc. 2020;95(2):265-273.
Zhou FL, Watada H, Tajima Y, et al. Identification of subgroups of patients with type 2 diabetes with differences in renal function preservation, comparing patients receiving sodium-glucose co-transporter-2 inhibitors with those receiving dipeptidyl peptidase-4 inhibitors, using a supervised machine-learning algorithm (PROFILE study): A retrospective analysis of a Japanese commercial medical database. Diabetes Obes Metab. 2019;21(8):1925-1934.
Heerspink HJL, Karasik A, Thuresson M, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. The Lancet Diabetes & Endocrinology. 2020;8(1):27-35.
Overview of National Medical Expenses in 2017 Available at: https://www.mhlw.go.jp/toukei/saikin/hw/k-iryohi/17/index.html. Accessed: December 12, 2019 (in Japanese).
The Institute for Health Economics and Policy (IHEP) report Available at: https://www.ihep.jp/publications/report/search.php?dl=69&i=1. Accessed: Febuary 20, 2020.
Fukuda H, Ikeda S, Shiroiwa T, Fukuda T. The effects of diagnostic definitions in claims data on healthcare cost estimates: evidence from a large-scale panel data analysis of diabetes care in Japan. Pharmacoeconomics. 2016;34(10):1005-1014.
Neville SE, Boye KS, Montgomery WS, Iwamoto K, Okamura M, Hayes RP. Diabetes in Japan: a review of disease burden and approaches to treatment. Diabetes Metab Res Rev. 2009;25(8):705-716.
Kaku K, Haneda M, Sakamaki H, et al. Cost-effectiveness analysis of empagliflozin in japan based on results from the Asian subpopulation in the EMPA-REG OUTCOME Trial. Clin Therapeutics. 2019;41(10):2021-40.e11.
Charokopou M, McEwan P, Lister S, et al. Cost-effectiveness of dapagliflozin versus DPP-4 inhibitors as an add-on to metformin in the treatment of type 2 diabetes mellitus from a UK healthcare system perspective. BMC Health Serv Res. 2015;15:496.
Kansal A, Reifsnider OS, Proskorovsky I, et al. Cost-effectiveness analysis of empagliflozin treatment in people with type 2 diabetes and established cardiovascular disease in the EMPA-REG OUTCOME trial. Diabet Med. 2019;36(11):1494-1502.
Nguyen E, Coleman CI, Nair S, Weeda ER. Cost-utility of empagliflozin in patients with type 2 diabetes at high cardiovascular risk. J Diabetes Complications. 2018;32(2):210-215.
Gourzoulidis G, Tzanetakos C, Ioannidis I, et al. Cost-effectiveness of empagliflozin for the treatment of patients with type 2 diabetes mellitus at increased cardiovascular risk in Greece. Clin Drug Investig. 2018;38(5):417-426.
Men P, Liu T, Zhai S. Empagliflozin in type 2 diabetes mellitus patients with high cardiovascular risk: a model-based cost-utility analysis in China. Diabetes Metab Syndr Obes. 2020;13:2823-2831.
Ramos M, Foos V, Ustyugova A, Hau N, Gandhi P, Lamotte M. Cost-Effectiveness Analysis of Empagliflozin in Comparison to Sitagliptin and Saxagliptin Based on Cardiovascular Outcome Trials in Patients with Type 2 Diabetes and Established Cardiovascular Disease. Diabetes Ther. 2019;10(6):2153-2167.
Parker ED, Wittbrodt ET, McPheeters JT, Frias JP. Comparison of healthcare resource utilization and costs in patients with type 2 diabetes initiating dapagliflozin versus sitagliptin. Diabetes Obes Metab. 2019;21(2):227-233.
Norhammar A, Bodegard J, Nyström T, et al. Dapagliflozin vs non-SGLT-2i treatment is associated with lower healthcare costs in type 2 diabetes patients similar to participants in the DECLARE-TIMI 58 trial: A nationwide observational study. Diabetes Obes Metab. 2019;21(12):2651-2659.
West SL, Strom BL, Poole C. Validity of pharmacoepidemiology drug and diagnosis data. In: Strom BL, ed. Pharmacoepidemiology. Chichester: John Wiley & Sons; 2000;661-705.
Terris DD, Litaker DG, Koroukian SM. Health state information derived from secondary databases is affected by multiple sources of bias. J Clin Epidemiol. 2007;60(7):734-741.
Psaty BM, Siscovick DS. Minimizing bias due to confounding by indication in comparative effectiveness research: the importance of restriction. JAMA. 2010;304(8):897-898.
Ooba N, Setoguchi S, Ando T, et al. Claims-based definition of death in Japanese claims database: validity and implications. PLoS One. 2013;8(5):e66116.
MINISTRY OF HEALTH,LABOUR AND WELFARE. VITAL STATISTICS OF JAPAN 2017. Available at: https://www.mhlw.go.jp/english/database/db-hw/vs01.html. Acceced: January 27, 2020.
Katkade VB, Sanders KN, Zou KH. Real world data: an opportunity to supplement existing evidence for the use of long-established medicines in health care decision making. J Multidiscip Healthc. 2018;11:295-304.
Ishikawa KB. Medical big data for research use: current status and related issues. Japan Med Assoc J. 2016;59(2-3):110-124.
Strom BL. Data validity issues in using claims data. Pharmacoepidemiol Drug Saf. 2001;10(5):389-392.
Prada-Ramallal G, Takkouche B, Figueiras A. Bias in pharmacoepidemiologic studies using secondary health care databases: a scoping review. BMC Med Res Methodol. 2019;19(1):53.
2017 Edition. Annual Health, Labour and Welfare Report- Social Security and Economic Growth -【 Summary 】. Available at: https://www.mhlw.go.jp/english/wp/wp-hw11/dl/summary.pdf. Accessed: March 12, 2020.
Ravizza S, Huschto T, Adamov A, et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nat Med. 2019;25(1):57-59.
Makino M, Yoshimoto R, Ono M, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019;9(1):11862.