How Jupiter's unusual magnetospheric topology structures its aurora.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
Apr 2021
Historique:
received: 02 06 2020
accepted: 22 02 2021
entrez: 10 4 2021
pubmed: 11 4 2021
medline: 11 4 2021
Statut: epublish

Résumé

Jupiter's bright persistent polar aurora and Earth's dark polar region indicate that the planets' magnetospheric topologies are very different. High-resolution global simulations show that the reconnection rate at the interface between the interplanetary and jovian magnetic fields is too slow to generate a magnetically open, Earth-like polar cap on the time scale of planetary rotation, resulting in only a small crescent-shaped region of magnetic flux interconnected with the interplanetary magnetic field. Most of the jovian polar cap is threaded by helical magnetic flux that closes within the planetary interior, extends into the outer magnetosphere, and piles up near its dawnside flank where fast differential plasma rotation pulls the field lines sunward. This unusual magnetic topology provides new insights into Jupiter's distinctive auroral morphology.

Identifiants

pubmed: 33837073
pii: 7/15/eabd1204
doi: 10.1126/sciadv.abd1204
pmc: PMC8034855
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Intramural NASA
ID : 80NSSC18K0822
Pays : United States

Informations de copyright

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Références

Science. 2003 Jan 17;299(5605):383-6
pubmed: 12532014
Science. 2011 Jun 3;332(6034):1183-6
pubmed: 21636770
Science. 2014 Jul 11;345(6193):184-7
pubmed: 25013068
Philos Trans A Math Phys Eng Sci. 2019 Sep 23;377(2154):20180405
pubmed: 31378177

Auteurs

Binzheng Zhang (B)

Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China. binzh@hku.hk zhonghua.yao@uliege.be.
Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China.
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA.

Peter A Delamere (PA)

Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA.

Zhonghua Yao (Z)

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. binzh@hku.hk zhonghua.yao@uliege.be.

Bertrand Bonfond (B)

LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium.

D Lin (D)

High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA.

Kareem A Sorathia (KA)

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.

Oliver J Brambles (OJ)

O.J. Brambles Consulting, Preston, UK.

William Lotko (W)

High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA.
Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.

Jeff S Garretson (JS)

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.

Viacheslav G Merkin (VG)

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.

Denis Grodent (D)

LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium.

William R Dunn (WR)

Mullard Space Science Laboratory, University College London, Dorking, UK.

John G Lyon (JG)

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.
Gamera Consulting, Hanover, NH, USA.

Classifications MeSH