T-cell memory in tissues.
Exhaustion
Hobit
Memory
Persistent infection
Tissue-resident memory T cells
Journal
European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
01
02
2021
received:
01
02
2021
accepted:
07
04
2021
pubmed:
11
4
2021
medline:
25
9
2021
entrez:
10
4
2021
Statut:
ppublish
Résumé
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Identifiants
pubmed: 33837521
doi: 10.1002/eji.202049062
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1310-1324Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708-712.
Cancro, M. P., Age-associated B cells. Annu. Rev. Immunol. 2020. 38: 315-340.
Tokoyoda, K., Hauser, A. E., Nakayama, T. and Radbruch, A., Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 2010. 10: 193-200.
Netea, M. G., Dominguez-Andres, J., Barreiro, L. B., Chavakis, T., Divangahi, M., Fuchs, E., Joosten, L. A. B. et al., Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020. 20: 375-388.
Netea, M. G., Joosten, L. A., Latz, E., Mills, K. H., Natoli, G., Stunnenberg, H. G., O'Neill, L. A. et al., Trained immunity: a program of innate immune memory in health and disease. Science 2016. 352: aaf1098.
Mueller, S. N. and Mackay, L. K., Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 2016. 16: 79-89.
Masopust, D. and Soerens, A. G., Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 2019. 37: 521-546.
Ordovas-Montanes, J., Beyaz, S., Rakoff-Nahoum, S. and Shalek, A. K., Distribution and storage of inflammatory memory in barrier tissues. Nat. Rev. Immunol. 2020. 20: 308-320.
Quintin, J., Saeed, S., Martens, J. H. A., Giamarellos-Bourboulis, E. J., Ifrim, D. C., Logie, C., Jacobs, L. et al., Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 2012. 12: 223-232.
Sun, J. C., Beilke, J. N. and Lanier, L. L., Adaptive immune features of natural killer cells. Nature 2009. 457: 557-561.
O'Leary, J. G., Goodarzi, M., Drayton, D. L. and von Andrian, U. H., T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 2006. 7: 507-516.
Nemeth, J., Olson, G. S., Rothchild, A. C., Jahn, A. N., Mai, D., Duffy, F. J., Delahaye, J. L. et al., Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection. PLoS Pathog. 2020. 16: e1008655.
Dogra, P., Rancan, C., Ma, W., Toth, M., Senda, T., Carpenter, D. J., Kubota, M. et al., Tissue determinants of human NK cell development, function, and residence. Cell 2020. 180: 749-763 e713.
Kaufmann, E., Sanz, J., Dunn, J. L., Khan, N., Mendonca, L. E., Pacis, A., Tzelepis, F. et al., BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 2018. 172: 176-190.
Gourbal, B., Pinaud, S., Beckers, G. J. M., Van Der Meer, J. W. M., Conrath, U. and Netea, M. G., Innate immune memory: an evolutionary perspective. Immunol. Rev. 2018. 283: 21-40.
Casey, K. A., Fraser, K. A., Schenkel, J. M., Moran, A., Abt, M. C., Beura, L. K., Lucas, P. J. et al., Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 2012. 188: 4866-4875.
Mackay, L. K., Stock, A. T., Ma, J. Z., Jones, C. M., Kent, S. J., Mueller, S. N., Heath, W. R. et al., Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. U.S.A. 2012. 109: 7037-7042.
Shin, H. and Iwasaki, A., A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 2012. 491: 463-467.
Onodera, T., Takahashi, Y., Yokoi, Y., Ato, M., Kodama, Y., Hachimura, S., Kurosaki, T. et al., Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc. Natl. Acad. Sci. U.S.A. 2012. 109: 2485-2490.
Landsverk, O. J., Snir, O., Casado, R. B., Richter, L., Mold, J. E., Reu, P., Horneland, R. et al., Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 2017. 214: 309-317.
Thome, J. J., Yudanin, N., Ohmura, Y., Kubota, M., Grinshpun, B., Sathaliyawala, T., Kato, T. et al., Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 2014. 159: 814-828.
Gebhardt, T., Wakim, L. M., Eidsmo, L., Reading, P. C., Heath, W. R. and Carbone, F. R., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 2009. 10: 524-530.
Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. and Carbone, F. R., Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 2008. 319: 198-202.
Masopust, D., Choo, D., Vezys, V., Wherry, E. J., Duraiswamy, J., Akondy, R., Wang, J et al., Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 2010. 207: 553-564.
Teijaro, J. R., Turner, D., Pham, Q., Wherry, E. J., Lefrancois, L. and Farber, D. L., Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 2011. 187: 5510-5514.
Szabo, P. A., Miron, M. and Farber, D. L., Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 2019. 4: eaas9673.
Beura, L. K., Wijeyesinghe, S., Thompson, E. A., Macchietto, M. G., Rosato, P. C., Pierson, M. J., Schenkel, J. M. et al., T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 2018. 48: 327-338.
Buggert, M., Nguyen, S., Salgado-Montes de Oca, G., Bengsch, B., Darko, S., Ransier, A., Roberts, E. R. et al., Identification and characterization of HIV-specific resident memory CD8± T cells in human lymphoid tissue. Sci Immunol 2018. 3: eaar452.
Miron, M., Kumar, B. V., Meng, W., Granot, T., Carpenter, D. J., Senda, T., Chen, D. et al., Human lymph nodes maintain TCF-1hi memory T cells with high functional potential and clonal diversity throughout life. J. Immunol. 2018. 201: 2132-2140.
Behr, F. M., Beumer-Chuwonpad, A., Kragten, N. A. M., Wesselink, T. H., Stark, R. and van Gisbergen, K., Circulating memory CD8+ T cells are limited in forming CD103+ tissue-resident memory T cells at mucosal sites after reinfection. Eur. J. Immunol. 2020. 51:151-166.
Pascutti, M. F., Geerman, S., Collins, N., Brasser, G., Nota, B., Stark, R., Behr, F. et al., Peripheral and systemic antigens elicit an expandable pool of resident memory CD8+ T cells in the bone marrow. Eur. J. Immunol. 2019. 49: 853-872.
Skirecki, T., Swacha, P., Hoser, G., Golab, J., Nowis, D. and Kozłowska, E., Bone marrow is the preferred site of memory CD4+ T cell proliferation during recovery from sepsis. JCI Insight 2020. 5: e134475.
Glennie, N. D., Yeramilli, V. A., Beiting, D. P., Volk, S. W., Weaver, C. T. and Scott, P., Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 2015. 212: 1405-1414.
Jiang, X., Clark, R. A., Liu, L., Wagers, A. J., Fuhlbrigge, R. C. and Kupper, T. S., Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 2012. 483: 227-231.
Klonowski, K. D., Williams, K. J., Marzo, A. L., Blair, D. A., Lingenheld, E. G. and Lefrançois, L., Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 2004. 20: 551-562.
Hondowicz, Brian D., An, D., Schenkel, Jason M., Kim, Karen S., Steach, Holly R., Krishnamurty, Akshay T., Keitany, Gladys J. et al., Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 2016. 44: 155-166.
Schenkel, J. M., Fraser, K. A., Vezys, V. and Masopust, D., Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 2013. 14: 509-513.
Turner, D. L., Bickham, K. L., Thome, J. J., Kim, C. Y., D'Ovidio, F., Wherry, E. J. and Farber, D. L., Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. 2014. 7: 501-510.
Anderson, K. G., Sung, H., Skon, C. N., Lefrancois, L., Deisinger, A., Vezys, V. and Masopust, D., Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 2012. 189: 2702-2706.
Steinert, Elizabeth M., Schenkel, Jason M., Fraser, Kathryn A., Beura, Lalit K., Manlove, Luke S., Igyártó, Botond Z., Southern, Peter J. et al., Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 2015. 161: 737-749.
Bartolomé-Casado, R., Landsverk, O. J. B., Chauhan, S. K., Richter, L., Phung, D., Greiff, V., Risnes, L. F. et al., Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 2019. 216: 2412-2426.
Snyder, M. E., Finlayson, M. O., Connors, T. J., Dogra, P., Senda, T., Bush, E., Carpenter, D. et al., Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 2019. 4: eaav5581.
Zuber, J., Shonts, B., Lau, S.-P., Obradovic, A., Fu, J., Yang, S., Lambert, M. et al., Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Sci. Immunol 2016. 1: eaah3732.
Purwar, R., Campbell, J., Murphy, G., Richards, W. G., Clark, R. A. and Kupper, T. S., Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 2011. 6: e16245.
Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R. S., Carpenter, D. J., Senda, T. et al., Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 2017. 20: 2921-2934.
Sathaliyawala, T., Kubota, M., Yudanin, N., Turner, D., Camp, P., Thome, Joseph J. C., Bickham, Kara L. et al., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013. 38: 187-197.
Hombrink, P., Helbig, C., Backer, R. A., Piet, B., Oja, A. E., Stark, R., Brasser, G. et al., Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 2016. 17: 1467-1478.
Bankovich, A. J., Shiow, L. R. and Cyster, J. G., CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem. 2010. 285: 22328-22337.
Mackay, L. K., Braun, A., Macleod, B. L., Collins, N., Tebartz, C., Bedoui, S., Carbone, F. R. et al., Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 2015. 194: 2059-2063.
Skon, C. N., Lee, J.-Y., Anderson, K. G., Masopust, D., Hogquist, K. A. and Jameson, S. C., Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 2013. 14: 1285-1293.
Hofmann, M. and Pircher, H., E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl. Acad. Sci. 2011. 108: 16741-16746.
Pauls, K., Schön, M., Kubitza, R. C., Homey, B., Wiesenborn, A., Lehmann, P., Ruzicka, T. et al., Role of integrin alphaE(CD103)beta7 for tissue-specific epidermal localization of CD8+ T lymphocytes. J. Invest. Dermatol. 2001. 117: 569-575.
Wakim, L. M., Woodward-Davis, A. and Bevan, M. J., Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl. Acad. Sci. 2010. 107: 17872-17879.
Pallett, L. J., Davies, J., Colbeck, E. J., Robertson, F., Hansi, N., Easom, N. J. W., Burton, A. R. et al., IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 2017. 214: 1567-1580.
Park, S. L., Zaid, A., Hor, J. L., Christo, S. N., Prier, J. E., Davies, B., Alexandre, Y. O. et al., Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 2018. 19: 183-191.
Mackay, L. K., Rahimpour, A., Ma, J. Z., Collins, N., Stock, A. T., Hafon, M. L., Vega-Ramos, J. et al., The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 2013. 14: 1294-1301.
Takamura, S., Yagi, H., Hakata, Y., Motozono, C., McMaster, S. R., Masumoto, T., Fujisawa, M. et al., Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med. 2016. 213: 3057-3073.
Walsh, D. A., Borges da Silva, H., Beura, L. K., Peng, C., Hamilton, S. E., Masopust, D. and Jameson, S. C., The functional requirement for CD69 in establishment of resident memory CD8+ T cells varies with tissue location. J. Immunol. 2019. 203:946-955.
Ugur, M., Schulz, O., Menon, M. B., Krueger, A. and Pabst, O., Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun. 2014. 5: 4821.
Iijima, N. and Iwasaki, A., A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 2014. 346: 93-98.
Strutt, T. M., Dhume, K., Finn, C. M., Hwang, J. H., Castonguay, C., Swain, S. L. and McKinstry, K. K., IL-15 supports the generation of protective lung-resident memory CD4 T cells. Mucosal. Immunol. 2018. 11: 668-680.
Watanabe, R., Gehad, A., Yang, C., Scott, L. L., Teague, J. E., Schlapbach, C., Elco, C. P. et al., Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 2015. 7: 279ra239.
Fernandez-Ruiz, D., Ng, Wei Y., Holz, L. E., Ma, Joel Z., Zaid, A., Wong, Yik C., Lau, Lei S. et al., Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 2016. 45: 889-902.
Ma, C., Mishra, S., Demel, E. L., Liu, Y. and Zhang, N., TGF-β controls the formation of kidney-resident T cells via promoting effector T cell extravasation. J. Immunol. 2017. 198: 749-756.
Ray, S. J., Franki, S. N., Pierce, R. H., Dimitrova, S., Koteliansky, V., Sprague, A. G., Doherty, P. C. et al., The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 2004. 20: 167-179.
Cheuk, S., Schlums, H., Gallais Sérézal, I., Martini, E., Chiang, S. C., Marquardt, N., Gibbs, A. et al., CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 2017. 46: 287-300.
Reilly, E. C., Lambert Emo, K., Buckley, P. M., Reilly, N. S., Smith, I., Chaves, F. A., Yang, H. et al., Trm integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc. Natl. Acad. Sci. 2020. 117: 12306-12314.
Bromley, S. K., Akbaba, H., Mani, V., Mora-Buch, R., Chasse, A. Y., Sama, A. and Luster, A. D., CD49a regulates cutaneous resident memory CD8+ T cell persistence and response. Cell Rep. 2020. 32: 108085.
Meharra, E. J., Schön, M., Hassett, D., Parker, C., Havran, W. and Gardner, H., Reduced gut intraepithelial lymphocytes in VLA1 null mice. Cell. Immunol. 2000. 201: 1-5.
Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K.-i., Dowgiert, R. K. and Kupper, T. S., The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 2006. 176: 4431-4439.
McCully, M. L., Ladell, K., Andrews, R., Jones, R. E., Miners, K. L., Roger, L., Baird, D. M. et al., CCR8 expression defines tissue-resident memory T cells in human skin. J. Immunol. 2018. 200: 1639-1650.
McNamara, H. A., Cai, Y., Wagle, M. V., Sontani, Y., Roots, C. M., Miosge, L. A., O'Connor, J. H. et al., Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2017. 2: eaaj1996.
Wein, A. N., McMaster, S. R., Takamura, S., Dunbar, P. R., Cartwright, E. K., Hayward, S. L., McManus, D. T. et al., CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 2019. 216: 2748-2762.
Swarnalekha, N., Schreiner, D., Litzler, L. C., Iftikhar, S., Kirchmeier, D., Künzli, M. and King, C. G., Redefining CD4 T cell residency: helper T cells orchestrate protective humoral immunity in the lung. bioRxiv 2020. https://doi.org/10.1101/2020.02.28.963280
Bergsbaken, T. and Bevan, M. J., Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol. 2015. 16: 406-414.
Thom, J. T., Weber, T. C., Walton, S. M., Torti, N. and Oxenius, A., The salivary gland acts as a sink for tissue-resident memory CD8+ T cells, facilitating protection from local cytomegalovirus infection. Cell Rep. 2015. 13: 1125-1136.
Kumar, B. V., Kratchmarov, R., Miron, M., Carpenter, D. J., Senda, T., Lerner, H., Friedman, A. et al., Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. JCI Insight 2018. 3: e123568.
Mackay, L. K., Minnich, M., Kragten, N. A., Liao, Y., Nota, B., Seillet, C., Zaid, A. et al., Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016. 352: 459-463.
Wakim, L. M., Woodward-Davis, A., Liu, R., Hu, Y., Villadangos, J., Smyth, G. and Bevan, M. J., The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 2012. 189: 3462-3471.
Clarke, J., Panwar, B., Madrigal, A., Singh, D., Gujar, R., Wood, O., Chee, S. J. et al., Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 2019. 216: 2128-2149.
Kurd, N. S., He, Z., Louis, T. L., Milner, J. J., Omilusik, K. D., Jin, W., Tsai, M. S. et al., Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 2020. 5: eaaz6894.
Milner, J. J., Toma, C., He, Z., Kurd, N. S., Nguyen, Q. P., McDonald, B., Quezada, L. et al., Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 2020. 52: 808-824.
Szabo, P. A., Levitin, H. M., Miron, M., Snyder, M. E., Senda, T., Yuan, J., Cheng, Y. L. et al., Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 2019. 10: 4706.
Zaid, A., Hor, J. L., Christo, S. N., Groom, J. R., Heath, W. R., Mackay, L. K. and Mueller, S. N., Chemokine receptor-dependent control of skin tissue-resident memory T cell formation. J. Immunol. 2017. 199: 2451-2459.
Zhang, N. and Bevan, M. J., Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 2013. 39: 687-696.
Hirai, T., Yang, Y., Zenke, Y., Li, H., Chaudhri, V. K., De La Cruz Diaz, J. S., Zhou, P. Y. et al., Competition for active TGFbeta cytokine allows for selective retention of antigen-specific tissue- resident memory T cells in the epidermal niche. Immunity 2021. 54: 84-98.
Munger, J. S., Huang, X., Kawakatsu, H., Griffiths, M. J., Dalton, S. L., Wu, J., Pittet, J. F. et al., The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999. 96: 319-328.
Mohammed, J., Beura, L. K., Bobr, A., Astry, B., Chicoine, B., Kashem, S. W., Welty, N. E. et al., Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta. Nat. Immunol. 2016. 17: 414-421.
Hirai, T., Zenke, Y., Yang, Y., Bartholin, L., Beura, L. K., Masopust, D. and Kaplan, D. H., Keratinocyte-mediated activation of the cytokine TGF-beta maintains skin recirculating memory CD8+ T cells. Immunity 2019. 50: 1249-1261.
Wakim, L. M., Smith, J., Caminschi, I., Lahoud, M. H. and Villadangos, J. A., Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunol. 2015. 8: 1060-1071.
Adachi, T., Kobayashi, T., Sugihara, E., Yamada, T., Ikuta, K., Pittaluga, S., Saya, H. et al., Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med. 2015. 21: 1272-1279.
Mackay, L. K., Wynne-Jones, E., Freestone, D., Pellicci, D. G., Mielke, L. A., Newman, D. M., Braun, A. et al., T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity 2015. 43: 1101-1111.
Dubois, S., Mariner, J., Waldmann, T. A. and Tagaya, Y., IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 2002. 17: 537-547.
Stolp, B., Thelen, F., Ficht, X., Altenburger, L. M., Ruef, N., Inavalli, V., Germann, P. et al., Salivary gland macrophages and tissue-resident CD8+ T cells cooperate for homeostatic organ surveillance. Sci. Immunol. 2020. 5: eaaz4371.
Mani, V., Bromley, S. K., Aijo, T., Mora-Buch, R., Carrizosa, E., Warner, R. D., Hamze, M. et al., Migratory DCs activate TGF-beta to precondition naive CD8± T cells for tissue-resident memory fate. Science 2019. 366: eaav5728.
Son, Y. M., Cheon, I. S., Wu, Y., Li, C., Wang, Z., Gao, X., Chen, Y. et al., Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses. Sci. Immunol. 2021. 6: eabb6852.
Swarnalekha, N., Schreiner, D., Litzler, L. C., Iftikhar, S., Kirchmeier, D., Kunzli, M., Son, Y. M. et al., T resident helper cells promote humoral responses in the lung. Sci. Immunol. 2021. 6: eabb6808.
Pan, Y., Tian, T., Park, C. O., Lofftus, S. Y., Mei, S., Liu, X., Luo, C. et al., Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 2017. 543: 252-256.
Frizzell, H., Fonseca, R., Christo, S. N., Evrard, M., Cruz-Gomez, S., Zanluqui, N. G., von Scheidt, B. et al., Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 2020. 5: eaay9283.
Beura, L. K., Hamilton, S. E., Bi, K., Schenkel, J. M., Odumade, O. A., Casey, K. A., Thompson, E. A. et al., Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 2016. 532: 512-516.
Zaid, A., Mackay, L. K., Rahimpour, A., Braun, A., Veldhoen, M., Carbone, F. R., Manton, J. H. et al., Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl. Acad. Sci. U.S.A. 2014. 111: 5307-5312.
Mayassi, T., Ladell, K., Gudjonson, H., McLaren, J. E., Shaw, D. G., Tran, M. T., Rokicka, J. J. et al., Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 2019. 176: 967-981.
Beura, L. K., Mitchell, J. S., Thompson, E. A., Schenkel, J. M., Mohammed, J., Wijeyesinghe, S., Fonseca, R. et al., Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 2018. 19: 173-182.
McMaster, S. R., Wilson, J. J., Wang, H. and Kohlmeier, J. E., Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-γ production. J. Immunol. 2015. 195: 203-209.
Roychoudhury, P., Swan, D. A., Duke, E., Corey, L., Zhu, J., Davé, V., Spuhler, L. R. et al., Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J. Clin. Invest. 2020. 130: 2903-2919.
Ariotti, S., Hogenbirk, M. A., Dijkgraaf, F. E., Visser, L. L., Hoekstra, M. E., Song, J.-Y., Jacobs, H. et al., Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 2014. 36: 101-105.
Schenkel, J. M., Fraser, K. A., Beura, L. K., Pauken, K. E., Vezys, V. and Masopust, D., Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 2014. 346: 98-101.
Low, J. S., Farsakoglu, Y., Amezcua Vesely, M. C., Sefik, E., Kelly, J. B., Harman, C. C. D., Jackson, R. et al., Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses. J. Exp. Med. 2020. 217: e20192291.
Fonseca, R., Beura, L. K., Quarnstrom, C. F., Ghoneim, H. E., Fan, Y., Zebley, C. C., Scott, M. C. et al., Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 2020. 21: 412-421.
Klicznik, M. M., Morawski, P. A., Höllbacher, B., Varkhande, S. R., Motley, S. J., Kuri-Cervantes, L., Goodwin, E. et al., Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 2019. 4: eaav8995.
Stolley, J. M., Johnston, T. S., Soerens, A. G., Beura, L. K., Rosato, P. C., Joag, V., Wijeyesinghe, S. P. et al., Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. J. Exp. Med. 2020. 217: e2019219.
Suarez-Ramirez, J. E., Chandiran, K., Brocke, S. and Cauley, L. S., Immunity to respiratory infection is reinforced through early proliferation of lymphoid TRM cells and prompt arrival of effector CD8 T cells in the lungs. Front. Immunol. 2019. 10: 1370.
Enamorado, M., Iborra, S., Priego, E., Cueto, F. J., Quintana, J. A., Martinez-Cano, S., Mejias-Perez, E. et al., Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 2017. 8: 16073.
Osborn, J. F., Mooster, J. L., Hobbs, S. J., Munks, M. W., Barry, C., Harty, J. T., Hill, A. B. et al., Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8+ T cells. Sci. Immunol. 2017. 2: eaan6049.
Osborn, J. F., Hobbs, S. J., Mooster, J. L., Khan, T. N., Kilgore, A. M., Harbour, J. C. and Nolz, J. C., Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog. 2019. 15: e1007633.
Khan, A. A., Srivastava, R., Chentoufi, A. A., Kritzer, E., Chilukuri, S., Garg, S., Yu, D. C. et al., Bolstering the number and function of HSV-1-specific CD8+ effector memory T cells and tissue-resident memory T cells in latently infected trigeminal ganglia reduces recurrent ocular herpes infection and disease. J. Immunol. 2017. 199: 186-203.
Srivastava, R., Khan, A. A., Chilukuri, S., Syed, S. A., Tran, T. T., Furness, J., Bahraoui, E. et al., CXCL10/CXCR3-dependent mobilization of herpes simplex virus-specific CD8+ TEM and CD8+ TRM cells within infected tissues allows efficient protection against recurrent herpesvirus infection and disease. J. Virol. 2017. 91: e00278-00217.
Verjans, G. M. G. M., Hintzen, R. Q., van Dun, J. M., Poot, A., Milikan, J. C., Laman, J. D., Langerak, A. W. et al., Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc. Natl. Acad. Sci. 2007. 104: 3496-3501.
Smith, C. J., Caldeira-Dantas, S., Turula, H. and Snyder, C. M., Murine CMV infection induces the continuous production of mucosal resident T cells. Cell Rep. 2015. 13: 1137-1148.
Hislop, A. D., Kuo, M., Drake-Lee, A. B., Akbar, A. N., Bergler, W., Hammerschmitt, N., Khan, N. et al., Tonsillar homing of Epstein-Barr virus-specific CD8+ T cells and the virus-host balance. J. Clin. Invest. 2005. 115: 2546-2555.
Woodberry, T., Suscovich, T. J., Henry, L. M., August, M., Waring, M. T., Kaur, A., Hess, C. et al., αEβ7 (CD103) expression identifies a highly active, tonsil-resident effector-memory CTL population. J. Immunol. 2005. 175: 4355-4362.
Woon, H. G., Braun, A., Li, J., Smith, C., Edwards, J., Sierro, F., Feng, C. G. et al., Compartmentalization of total and virus-specific tissue-resident memory CD8+ T cells in human lymphoid organs. PLoS Pathog. 2016. 12: e1005799.
Ruhl, J., Leung, C. S. and Münz, C., Vaccination against the Epstein-Barr virus. Cell. Mol. Life Sci. 2020, 77: 4315-4324.
Im, S. J., Konieczny, B. T., Hudson, W. H., Masopust, D. and Ahmed, R., PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc. Natl. Acad. Sci. 2020. 117: 4292-4299.
Stelma, F., de Niet, A., Sinnige, M. J., van Dort, K. A., van Gisbergen, K. P. J. M., Verheij, J., van Leeuwen, E. M. M. et al., Human intrahepatic CD69+ CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci. Rep. 2017. 7: 6172.
Vukmanovic-Stejic, M., Sandhu, D., Seidel, J. A., Patel, N., Sobande, T. O., Agius, E., Jackson, S. E. et al., The characterization of varicella zoster virus-specific T cells in skin and blood during aging. J. Invest. Dermatol. 2015. 135: 1752-1762.
Lim, C. J., Lee, Y. H., Pan, L., Lai, L., Chua, C., Wasser, M., Lim, T. K. H. et al., Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019. 68: 916-927.
Gibbs, A., Buggert, M., Edfeldt, G., Ranefall, P., Introini, A., Cheuk, S., Martini, E. et al., Human immunodeficiency virus-infected women have high numbers of CD103−CD8± T cells residing close to the basal membrane of the ectocervical epithelium. J. Infect. Dis. 2017. 218: 453-465.
Kiniry, B. E., Li, S., Ganesh, A., Hunt, P. W., Somsouk, M., Skinner, P. J., Deeks, S. G. et al., Detection of HIV-1-specific gastrointestinal tissue resident CD8± T-cells in chronic infection. Mucosal Immunol. 2018. 11: 909-920.
Goplen, N. P., Wu, Y., Son, Y. M., Li, C., Wang, Z., Cheon, I. S., Jiang, L. et al., Tissue-resident CD8+ T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci. Immunol. 2020. 5: eabc4557.
Turner, D. L., Goldklang, M., Cvetkovski, F., Paik, D., Trischler, J., Barahona, J., Cao, M. et al., Biased generation and in situ activation of lung tissue-resident memory CD4 T cells in the pathogenesis of allergic asthma. J. Immunol. 2018. 200: 1561-1569.
Gadsbøll, A.-S. Ø., Jee, M. H., Funch, A. B., Alhede, M., Mraz, V., Weber, J. F., Callender, L. A. et al., Pathogenic CD8+ epidermis-resident memory T cells displace dendritic epidermal T cells in allergic dermatitis. J. Invest. Dermatol. 2020. 140: 806-815.
Gamradt, P., Laoubi, L., Nosbaum, A., Mutez, V., Lenief, V., Grande, S., Redoulès, D. et al., Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J. Allergy Clin. Immunol. 2019. 143: 2147-2157.
Kim, S., Kim, J., Park, C., Kupper, T. and Lee, K., 022 Distinct transcriptome signature of skin-resident memory T cells and migratory memory T cells in atopic dermatitis. J. Invest. Dermatol. 2018. 138: S4.
Kim, S., Park, C., Shin, J., Noh, J., Kim, H., Kim, J., Lee, H. et al., 049 Multicytokine-producing tissue resident memory (TRM) cells in atopic dermatitis patient. J. Invest. Dermatol. 2016. 136: S9.
Boniface, K., Jacquemin, C., Darrigade, A.-S., Dessarthe, B., Martins, C., Boukhedouni, N., Vernisse, C. et al., Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J. Invest. Dermatol. 2018. 138: 355-364.
Boyman, O., Hefti, H. P., Conrad, C., Nickoloff, B. J., Suter, M. and Nestle, F. O., Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 2004. 199: 731-736.
Cheuk, S., Wikén, M., Blomqvist, L., Nylén, S., Talme, T., Ståhle, M. and Eidsmo, L., Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 2014. 192: 3111-3120.
Matos, T. R., O'Malley, J. T., Lowry, E. L., Hamm, D., Kirsch, I. R., Robins, H. S., Kupper, T. S. et al., Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. J. Clin. Invest. 2017. 127: 4031-4041.
Richmond, J. M., Strassner, J. P., Rashighi, M., Agarwal, P., Garg, M., Essien, K. I., Pell, L. S. et al., Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo. J. Invest. Dermatol. 2019. 139: 769-778.
Boland, B. S., He, Z., Tsai, M. S., Olvera, J. G., Omilusik, K. D., Duong, H. G., Kim, E. S. et al., Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci Immunol 2020. 5: eabb4432.
Bottois, H., Ngollo, M., Hammoudi, N., Courau, T., Bonnereau, J., Chardiny, V., Grand, C. et al., KLRG1 and CD103 expressions define distinct intestinal tissue-resident memory CD8 T cell subsets modulated in Crohn's disease. Front. Immunol. 2020. 11: 896.
Corridoni, D., Antanaviciute, A., Gupta, T., Fawkner-Corbett, D., Aulicino, A., Jagielowicz, M., Parikh, K. et al., Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat. Med. 2020. 26: 1480-1490.
Noble, A., Durant, L., Hoyles, L., Mccartney, A. L., Man, R., Segal, J., Costello, S. P. et al., Deficient resident memory T cell and CD8 T cell response to commensals in inflammatory bowel disease. J. Crohn's Col. 2019. 14: 525-537.
Zundler, S., Becker, E., Spocinska, M., Slawik, M., Parga-Vidal, L., Stark, R., Wiendl, M. et al., Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 2019. 20: 288-300.
Kuric, E., Seiron, P., Krogvold, L., Edwin, B., Buanes, T., Hanssen, K. F., Skog, O. et al., Demonstration of tissue resident memory CD8 T cells in insulitic lesions in adult patients with recent-onset type 1 diabetes. Am. J. Pathol. 2017. 187: 581-588.
Aschenbrenner, D., Foglierini, M., Jarrossay, D., Hu, D., Weiner, H. L., Kuchroo, V. K., Lanzavecchia, A. et al., An immunoregulatory and tissue-residency program modulated by c-MAF in human TH17 cells. Nat. Immunol. 2018. 19: 1126-1136.
Petrelli, A., Mijnheer, G., van Konijnenburg, D. P. H., van der Wal, M. M., Giovannone, B., Mocholi, E., Vazirpanah, N. et al., PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J. Clin. Invest. 2018. 128: 4669-4681.
Qaiyum, Z., Gracey, E., Yao, Y. and Inman, R. D., Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann. Rheum. Dis. 2019. 78: 1566-1575.
Sherlock, J. P., Joyce-Shaikh, B., Turner, S. P., Chao, C.-C., Sathe, M., Grein, J., Gorman, D. M. et al., IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4−CD8− entheseal resident T cells. Nat. Med. 2012. 18: 1069-1076.
Steel, K. J. A., Srenathan, U., Ridley, M., Durham, L. E., Wu, S.-Y., Ryan, S. E., Hughes, C. D. et al., Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 2020. 72: 435-447.
Fransen, N. L., Hsiao, C.-C., van der Poel, M., Engelenburg, H. J., Verdaasdonk, K., Vincenten, M. C. J., Remmerswaal, E. B. M. et al., Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 2020. 143: 1714-1730.
Hsiao, C.-C., Fransen, N. L., van den Bosch, A. M. R., Brandwijk, K. I. M., Huitinga, I., Hamann, J. and Smolders, J., White matter lesions in multiple sclerosis are enriched for CD20dim CD8+ tissue-resident memory T cells. Eur. J. Immunol. 2021. 51: 483-486.
Machado-Santos, J., Saji, E., Tröscher, A. R., Paunovic, M., Liblau, R., Gabriely, G., Bien, C. G. et al., The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018. 141: 2066-2082.
Pallett, L. J., Burton, A. R., Amin, O. E., Rodriguez-Tajes, S., Patel, A. A., Zakeri, N., Jeffery-Smith, A. et al., Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 2020. 217: e20200050.
Bellmàs Sanz, R., Hitz, A., Wiegmann, B., Bläsing, K., Sommer, W., Ius, F., Kühne, J. et al., Donor T and NK cells with a special tissue-resident memory phenotype migrate into the periphery of lung transplant recipients-a potential feature for tolerance development. J. Heart Lung Transplant. 2020. 39: S198.
Weiner, J., Svetlicky, N., Kang, J., Sadat, M., Khan, K., Duttargi, A., Stovroff, M. et al., CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation. Am. J. Transplant. https://doi.org/10.1111/ajt.16405
de Leur, K., Dieterich, M., Hesselink, D. A., Corneth, O. B. J., Dor, F. J. M. F., de Graav, G. N., Peeters, A. M. A. et al., Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies. Sci. Rep. 2019. 9: 5984.
Lian, C. G., Bueno, E. M., Granter, S. R., Laga, A. C., Saavedra, A. P., Lin, W. M., Susa, J. S. et al., Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol. 2014. 27: 788-799.
Strobl, J., Pandey, R. V., Krausgruber, T., Bayer, N., Kleissl, L., Reininger, B., Vieyra-Garcia, P. et al., Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease. Sci. Transl. Med. 2020. 12: eabb7028.
Wang, D., Yuan, R., Feng, Y., El-Asady, R., Farber, D. L., Gress, R. E., Lucas, P. J. et al., Regulation of CD103 expression by CD8+ T cells responding to renal allografts. J. Immunol. 2004. 172: 214-221.
Yuan, R., El-Asady, R., Liu, K., Wang, D., Drachenberg, C. B. and Hadley, G. A., Critical role for CD103+CD8+ effectors in promoting tubular injury following allogeneic renal transplantation. J. Immunol. 2005. 175: 2868-2879.
Tkachev, V., Kaminski, J., Potter, E. L., Furlan, S. N., Yu, A., Hunt, D. J., McGuckin, C. et al., Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease. Sci. Transl. Med. 2021. 13: eabc0227.
Bösmüller, H. C., Wagner, P., Peper, J. K., Schuster, H., Pham, D. L., Greif, K., Beschorner, C. et al., Combined immunoscore of CD103 and CD3 identifies long-term survivors in high-grade serous ovarian cancer. Int. J. Gynecol. Cancer 2016. 26: 671-679.
Djenidi, F., Adam, J., Goubar, A., Durgeau, A., Meurice, G., de Montpréville, V., Validire, P. et al., CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 2015. 194: 3475-3486.
Ganesan, A.-P., Clarke, J., Wood, O., Garrido-Martin, E. M., Chee, S. J., Mellows, T., Samaniego-Castruita, D. et al., Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 2017. 18: 940-950.
Komdeur, F. L., Prins, T. M., van de Wall, S., Plat, A., Wisman, G. B. A., Hollema, H., Daemen, T. et al., CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. OncoImmunology 2017. 6: e1338230.
Savas, P., Virassamy, B., Ye, C., Salim, A., Mintoff, C. P., Caramia, F., Salgado, R. et al., Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 2018. 24: 986-993.
Wang, B., Wu, S., Zeng, H., Liu, Z., Dong, W., He, W., Chen, X. et al., CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J. Urol. 2015. 194: 556-562.
Workel, H. H., Komdeur, F. L., Wouters, M. C. A., Plat, A., Klip, H. G., Eggink, F. A., Wisman, G. B. A. et al., CD103 defines intraepithelial CD8+ PD1+ tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. Eur. J. Cancer 2016. 60: 1-11.
Boddupalli, C. S., Bar, N., Kadaveru, K., Krauthammer, M., Pornputtapong, N., Mai, Z., Ariyan, S. et al., Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight 2016. 1: e88955.
Hartana, C. A., Ahlén Bergman, E., Broomé, A., Berglund, S., Johansson, M., Alamdari, F., Jakubczyk, T. et al., Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin. Experimentl. Immunol. 2018. 194: 39-53.
Park, S. L., Buzzai, A., Rautela, J., Hor, J. L., Hochheiser, K., Effern, M., McBain, N. et al., Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 2019. 565: 366-371.
Edwards, J., Wilmott, J. S., Madore, J., Gide, T. N., Quek, C., Tasker, A., Ferguson, A. et al., CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 2018. 24: 3036-3045.
Wu, J., Madi, A., Mieg, A., Hotz-Wagenblatt, A., Weisshaar, N., Ma, S., Mohr, K. et al., T cell factor 1 suppresses CD103+ lung tissue-resident memory T cell development. Cell Rep. 2020. 31: 107484.
Zhou, X., Yu, S., Zhao, D. M., Harty, J. T., Badovinac, V. P. and Xue, H. H., Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 2010. 33: 229-240.
Rosato, P. C., Wijeyesinghe, S., Stolley, J. M. and Masopust, D., Integrating resident memory into T cell differentiation models. Curr. Opin. Immunol. 2020. 63: 35-42.
Milner, J. J., Toma, C., Yu, B., Zhang, K., Omilusik, K., Phan, A. T., Wang, D. et al., Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 2017. 552: 253-257.
Shan, Q., Zeng, Z., Xing, S., Li, F., Hartwig, S. M., Gullicksrud, J. A., Kurup, S. P. et al., The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nat. Immunol. 2017. 18: 931-939.
Behr, F. M., Kragten, N. A. M., Wesselink, T. H., Nota, B., van Lier, R. A. W., Amsen, D., Stark, R. et al., Blimp-1 rather than Hobit drives the formation of tissue-resident memory CD8+ T cells in the lungs. Front. Immunol. 2019. 10: 400.
Kragten, N. A. M., Behr, F. M., Vieira Braga, F. A., Remmerswaal, E. B. M., Wesselink, T. H., Oja, A. E., Hombrink, P. et al., Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur. J. Immunol. 2018. 48: 1644-1662.
Backer, R. A., Helbig, C., Gentek, R., Kent, A., Laidlaw, B. J., Dominguez, C. X., de Souza, Y. S. et al., A central role for Notch in effector CD8+ T cell differentiation. Nat. Immunol. 2014. 15: 1143-1151.
Yang, C. Y., Best, J. A., Knell, J., Yang, E., Sheridan, A. D., Jesionek, A. K., Li, H. S. et al., The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 2011. 12: 1221-1229.
Stemberger, C., Huster, K. M., Koffler, M., Anderl, F., Schiemann, M., Wagner, H. and Busch, D. H., A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007. 27: 985-997.
Gerlach, C., van Heijst, J. W., Swart, E., Sie, D., Armstrong, N., Kerkhoven, R. M., Zehn, D. et al., One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 2010. 207: 1235-1246.
Gaide, O., Emerson, R. O., Jiang, X., Gulati, N., Nizza, S., Desmarais, C., Robins, H. et al., Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 2015. 21: 647-653.
Joshi, N. S., Cui, W., Chandele, A., Lee, H. K., Urso, D. R., Hagman, J., Gapin, L. et al., Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 2007. 27: 281-295.
Rutishauser, R. L., Martins, G. A., Kalachikov, S., Chandele, A., Parish, I. A., Meffre, E., Jacob, J. et al., Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 2009. 31: 296-308.
Kallies, A., Xin, A., Belz, G. T. and Nutt, S. L., Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 2009. 31: 283-295.
Wang, D., Diao, H., Getzler, A. J., Rogal, W., Frederick, M. A., Milner, J., Yu, B. et al., The transcription factor Runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 2018. 48: 659-674 e656.
Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. and Ahmed, R., Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 2006. 176: 2079-2083.
Iborra, S., Martinez-Lopez, M., Khouili, S. C., Enamorado, M., Cueto, F. J., Conde-Garrosa, R., Del Fresno, C. and Sancho, D., Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity 2016. 45: 847-860.
Kok, L., Dijkgraaf, F. E., Urbanus, J., Bresser, K., Vredevoogd, D. W., Cardoso, R. F., Perie, L. et al., A committed tissue-resident memory T cell precursor within the circulating CD8+ effector T cell pool. J. Exp. Med. 2020. 217: e20191711.
Intlekofer, A. M., Takemoto, N., Wherry, E. J., Longworth, S. A., Northrup, J. T., Palanivel, V. R., Mullen, A. C. et al., Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 2005. 6: 1236-1244.
Laidlaw, B. J., Zhang, N., Marshall, H. D., Staron, M. M., Guan, T., Hu, Y., Cauley, L. S. et al., CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 2014. 41: 633-645.
Salehi, S., Bankoti, R., Benevides, L., Willen, J., Couse, M., Silva, J. S., Dhall, D. et al., B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J. Immunol. 2012. 189: 5682-5693.
Kee, B. L., Rivera, R. R. and Murre, C., Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-beta. Nat. Immunol. 2001. 2: 242-247.
Behr, F. M., Parga-Vidal, L., Kragten, N. A. M., van Dam, T. J. P., Wesselink, T. H., Sheridan, B. S., Arens, R. et al., Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol. 2020. 21: 1070-1081.
Shin, H., Blackburn, S. D., Intlekofer, A. M., Kao, C., Angelosanto, J. M., Reiner, S. L. and Wherry, E. J., A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 2009. 31: 309-320.
Utzschneider, D. T., Charmoy, M., Chennupati, V., Pousse, L., Ferreira, D. P., Calderon-Copete, S., Danilo, M. et al., T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 2016. 45: 415-427.
Im, S. J., Hashimoto, M., Gerner, M. Y., Lee, J., Kissick, H. T., Burger, M. C., Shan, Q. et al., Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 2016. 537: 417-421.
He, R., Hou, S., Liu, C., Zhang, A., Bai, Q., Han, M., Yang, Y. et al., Follicular CXCR5- expressing CD8+ T cells curtail chronic viral infection. Nature 2016. 537: 412-428.