Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom.
Journal
British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
22
07
2020
accepted:
13
01
2021
revised:
04
01
2021
pubmed:
14
4
2021
medline:
15
12
2021
entrez:
13
4
2021
Statut:
ppublish
Résumé
The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK. We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC). Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%). In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.
Sections du résumé
BACKGROUND
The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK.
METHODS
We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC).
RESULTS
Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%).
CONCLUSION
In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.
Identifiants
pubmed: 33846525
doi: 10.1038/s41416-021-01278-0
pii: 10.1038/s41416-021-01278-0
pmc: PMC8184952
doi:
Types de publication
Comparative Study
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2026-2034Subventions
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00006/1
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : U19 CA203654
Pays : United States
Organisme : NCI NIH HHS
ID : R03 CA245979
Pays : United States
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Commentaires et corrections
Type : ErratumIn
Références
Cancer Research UK. Cancer Statistics for the UK. https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk (2020).
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
pubmed: 30207593
doi: 10.3322/caac.21492
National Lung Screening Trial Research Team, Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).
doi: 10.1056/NEJMoa1102873
de Koning, H. J., van der Aalst, C. M., de Jong, P. A., Scholten, E. T., Nackaerts, K., Heuvelmans, M. A. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).
Moyer, V. A. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 160, 330–338 (2014).
pubmed: 24378917
Crosbie, P. A., Balata, H., Evison, M., Atack, M., Bayliss-Brideaux, V., Colligan, D. et al. Implementing lung cancer screening: baseline results from a community-based “Lung Health Check” pilot in deprived areas of Manchester. Thorax 74, 405–409 (2018).
doi: 10.1136/thoraxjnl-2017-211377
pubmed: 29440588
Crosbie, P. A., Balata, H., Evison, M., Atack, M., Bayliss-Brideaux, V., Colligan, D. et al. Second round results from the Manchester “Lung Health Check” community-based targeted lung cancer screening pilot. Thorax 74, 700–704 (2018).
doi: 10.1136/thoraxjnl-2018-212547
pubmed: 30420406
Ghimire, B., Maroni, R., Vulkan, D., Shah, Z., Gaynor, E., Timoney, M. et al. Evaluation of a health service adopting proactive approach to reduce high risk of lung cancer: The Liverpool Healthy Lung Programme. Lung Cancer 134, 66–71 (2019).
doi: 10.1016/j.lungcan.2019.05.026
pubmed: 31319997
Jemal, A. & Fedewa, S. A. Lung cancer screening with low-dose computed tomography in the United States - 2010 to 2015. JAMA Oncol. 3, 1278–1281 (2017).
doi: 10.1001/jamaoncol.2016.6416
pubmed: 28152136
pmcid: 5824282
Quaife, S. L., Ruparel, M., Dickson, J. L., Beeken, R. J., McEwen, A., Baldwin, D. R. et al. Lung Screen Uptake Trial (LSUT): randomized controlled clinical trial testing targeted invitation materials. Am. J. Respir. Crit. Care Med. 201, 965–975 (2020).
doi: 10.1164/rccm.201905-0946OC
pubmed: 31825647
pmcid: 7159423
Field, J. K., Duffy, S. W., Baldwin, D. R., Brain, K. E., Devaraj, A., Eisen, T. et al. The UK Lung Cancer Screening Trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer. Health Technol. Assess. 20, 1–146 (2016).
doi: 10.3310/hta20400
pubmed: 27224642
pmcid: 4904185
Grover, H., Ross, T. & Fuller, E. Implementation of targeted screening for lung cancer in a high-risk population within routine NHS practice using low-dose computed tomography. Thorax 75, 348–350 (2020).
doi: 10.1136/thoraxjnl-2019-214303
pubmed: 32127463
NHS England. NHS to rollout lung cancer scanning trucks across the country. https://www.england.nhs.uk/2019/02/lung-trucks/ (2019).
National Cancer Programme. Targeted screening for lung cancer with low radiation dose computed tomography. Standard protocol prepared for the NHS England Targeted Lung Health Checks Programme. Version 1. (NHS, 2019).
US Preventive Services Task Force. Lung Cancer Screening Draft Recommendation Statement. https://www.uspreventiveservicestaskforce.org/uspstf/draft-recommendation/lung-cancer-screening-2020 (2020).
Kovalchik, S. A., Tammemagi, M., Berg, C. D., Caporaso, N. E., Riley, T. L., Korch, M. et al. Targeting of low-dose CT screening according to the risk of lung-cancer death. N. Engl. J. Med. 369, 245–254 (2013).
doi: 10.1056/NEJMoa1301851
pubmed: 23863051
pmcid: 3783654
Tammemägi, M. C., Katki, H. A., Hocking, W. G., Church, T. R., Caporaso, N., Kvale, P. A. et al. Selection criteria for lung-cancer screening. N. Engl. J. Med. 368, 728–736 (2013).
doi: 10.1056/NEJMoa1211776
pubmed: 23425165
pmcid: 3929969
Katki, H. A., Kovalchik, S. A., Berg, C. D., Cheung, L. C. & Chaturvedi, A. K. Development and validation of risk models to select ever-smokers for CT lung cancer screening. JAMA 315, 2300–2311 (2016).
doi: 10.1001/jama.2016.6255
pubmed: 27179989
pmcid: 4899131
Ten Haaf, K., Bastani, M., Cao, P., Jeon, J., Toumazis, I., Han, S. S. et al. A comparative modeling analysis of risk-based lung cancer screening strategies. J. Natl Cancer Inst. 112, 466–479 (2019).
Cassidy, A., Myles, J. P., van Tongeren, M., Page, R. D., Liloglou, T., Duffy, S. W. et al. The LLP risk model: an individual risk prediction model for lung cancer. Br. J. Cancer 98, 270–276 (2008).
doi: 10.1038/sj.bjc.6604158
pubmed: 18087271
Katki, H. A., Petito, L. C., Cheung, L. C., Jacobs, E., Jemal, A., Berg, C. D. et al. Implications of 9 risk prediction models for selecting ever-smokers for CT lung-cancer screening. Ann. Intern. Med. 169, 10–19 (2018).
doi: 10.7326/M17-2701
pubmed: 29800127
pmcid: 6557386
Ten Haaf, K., Jeon, J., Tammemägi, M. C., Han, S. S., Kong, C. Y., Plevritis, S. K. et al. Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med. 14, e1002277 (2017).
doi: 10.1371/journal.pmed.1002277
pubmed: 28376113
pmcid: 5380315
Li, K., Husing, A., Sookthai, D., Bergmann, M., Boeing, H., Becker, N. et al. Selecting high-risk individuals for lung cancer screening: a prospective evaluation of existing risk models and eligibility criteria in the German EPIC cohort. Cancer Prev. Res. 8, 777–785 (2015).
doi: 10.1158/1940-6207.CAPR-14-0424
Weber, M., Yap, S., Goldsbury, D., Manners, D., Tammemagi, M., Marshall, H. et al. Identifying high risk individuals for targeted lung cancer screening: Independent validation of the PLCO m2012 risk prediction tool. Int. J. Cancer 141, 242–253 (2017).
doi: 10.1002/ijc.30673
pubmed: 28249359
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
doi: 10.1371/journal.pmed.1001779
pubmed: 25826379
pmcid: 4380465
Riboli, E., Hunt, K. J., Slimani, N., Ferrari, P., Norat, T., Fahey, M. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124 (2002).
doi: 10.1079/PHN2002394
pubmed: 12639222
Swerdlow, A. J., Jones, M. E., Schoemaker, M. J., Hemming, J., Thomas, D., Williamson, J. et al. The Breakthrough Generations Study: design of a long-term UK cohort study to investigate breast cancer aetiology. Br. J. Cancer 105, 911–917 (2011).
doi: 10.1038/bjc.2011.337
pubmed: 21897394
pmcid: 3185950
Bach, P. B., Kattan, M. W., Thornquist, M. D., Kris, M. G., Tate, R. C., Barnett, M. J. et al. Variations in lung cancer risk among smokers. J. Natl Cancer Inst. 95, 470–478 (2003).
doi: 10.1093/jnci/95.6.470
pubmed: 12644540
Field, J. K., Vulkan, D., Davies, M. P. A., Duffy, S. W. & Gabe, R. Liverpool Lung Project lung cancer risk stratification model: calibration and prospective validation. Thorax 76, 161–168 (2021).
Hoggart, C., Brennan, P., Tjonneland, A., Vogel, U., Overvad, K., Østergaard, J. N. et al. A risk model for lung cancer incidence. Cancer Prev. Res. 5, 834–846 (2012).
doi: 10.1158/1940-6207.CAPR-11-0237
Landy, R., Cheung, L. C., Berg, C. D., Chaturvedi, A. K., Robbins, H. A. & Katki, H. A. Contemporary implications of U.S. Preventive Services Task Force and risk-based guidelines for lung cancer screening eligibility in the United States. Ann. Intern. Med. 171, 384 (2019).
doi: 10.7326/M18-3617
pubmed: 31158854
pmcid: 6822170
Cheung, L. C., & Katki, H. A. lcmodels R package. NCI Division of Cancer Epidemiology and Genetics: Tools and Resources. https://dceg.cancer.gov/tools/risk-assessment/lcmodels (2018).
Fry, A., Littlejohns, T. J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).
doi: 10.1093/aje/kwx246
pubmed: 28641372
pmcid: 5860371
Haddad, D. N., Sandler, K. L., Henderson, L. M., Rivera, M. P. & Aldrich, M. C. Disparities in lung cancer screening: a review. Ann. Am. Thorac. Soc. 17, 399–405 (2020).
Mazzone, P. J., Silvestri, G. A., Patel, S., Kanne, J. P., Kinsinger, L. S., Wiener, R. S. et al. Screening for lung cancer: CHEST guideline and expert panel report. Chest 153, 954–985 (2018).
doi: 10.1016/j.chest.2018.01.016
pubmed: 29374513
Advani, S. & Braithwaite, D. Optimizing selection of candidates for lung cancer screening: role of comorbidity, frailty and life expectancy. Transl. Lung Cancer Res. 8, S454–S459 (2019).
doi: 10.21037/tlcr.2019.10.03
pubmed: 32038937
pmcid: 6987350
Cheung, L. C., Berg, C. D., Castle, P. E., Katki, H. A. & Chaturvedi, A. K. Life-gained-based versus risk-based selection of smokers for lung cancer screening. Ann. Intern. Med. 171, 623–632 (2019).
Yorkshire Cancer Research. Yorkshire Cancer Research announces UK’s largest lung cancer screening trial. https://yorkshirecancerresearch.org.uk/news/yorkshire-cancer-research-announces-uks-largest-lung-cancer-screening-trial (2017).
National Cancer Institute. Risk-based NLST Outcomes Tool (RNOT). https://analysistools.nci.nih.gov/lungCancerScreening (2017).
Liverpool Lung Project. MyLungRisk. www.mylungrisk.org (2019).
Brock University. Lung cancer risk calculators. https://brocku.ca/lung-cancer-screening-and-risk-prediction/risk-calculators/ (2019).