Compliance of the cerebrospinal space: comparison of three methods.

Cerebral arterial blood volume Cerebrospinal compliance Infusion test Intracranial pressure Pulse waveform

Journal

Acta neurochirurgica
ISSN: 0942-0940
Titre abrégé: Acta Neurochir (Wien)
Pays: Austria
ID NLM: 0151000

Informations de publication

Date de publication:
07 2021
Historique:
received: 03 12 2020
accepted: 26 03 2021
pubmed: 15 4 2021
medline: 21 10 2021
entrez: 14 4 2021
Statut: ppublish

Résumé

Cerebrospinal compliance describes the ability of the cerebrospinal space to buffer changes in volume. Diminished compliance is associated with increased risk of potentially threatening increases in intracranial pressure (ICP) when changes in cerebrospinal volume occur. However, despite various methods of estimation proposed so far, compliance is seldom used in clinical practice. This study aimed to compare three measures of cerebrospinal compliance. ICP recordings from 36 normal-pressure hydrocephalus patients who underwent infusion tests with parallel recording of transcranial Doppler blood flow velocity were retrospectively analysed. Three methods were used to calculate compliance estimates during changes in the mean ICP induced by infusion of fluid into the cerebrospinal fluid space: (a) based on Marmarou's model of cerebrospinal fluid dynamics (C Increase in ICP caused a significant decrease in all compliance estimates (p < 0.0001). Time courses of compliance estimators were strongly positively correlated with each other (group-averaged Spearman correlation coefficients: 0.94 [0.88-0.97] for C Indirect methods, C

Sections du résumé

BACKGROUND
Cerebrospinal compliance describes the ability of the cerebrospinal space to buffer changes in volume. Diminished compliance is associated with increased risk of potentially threatening increases in intracranial pressure (ICP) when changes in cerebrospinal volume occur. However, despite various methods of estimation proposed so far, compliance is seldom used in clinical practice. This study aimed to compare three measures of cerebrospinal compliance.
METHODS
ICP recordings from 36 normal-pressure hydrocephalus patients who underwent infusion tests with parallel recording of transcranial Doppler blood flow velocity were retrospectively analysed. Three methods were used to calculate compliance estimates during changes in the mean ICP induced by infusion of fluid into the cerebrospinal fluid space: (a) based on Marmarou's model of cerebrospinal fluid dynamics (C
RESULTS
Increase in ICP caused a significant decrease in all compliance estimates (p < 0.0001). Time courses of compliance estimators were strongly positively correlated with each other (group-averaged Spearman correlation coefficients: 0.94 [0.88-0.97] for C
CONCLUSIONS
Indirect methods, C

Identifiants

pubmed: 33852065
doi: 10.1007/s00701-021-04834-y
pii: 10.1007/s00701-021-04834-y
pmc: PMC8195969
doi:

Types de publication

Comparative Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1979-1989

Références

Alperin N, Sivaramakrishnan A, Lichtor T (2005) Magnetic resonance imaging–based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg 103:46–52. https://doi.org/10.3171/jns.2005.103.1.0046
doi: 10.3171/jns.2005.103.1.0046 pubmed: 16121972
Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer M-E (2007) A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng 54:483–491. https://doi.org/10.1109/TBME.2006.890492
doi: 10.1109/TBME.2006.890492 pubmed: 17355060
Ballestero MFM, Frigieri G, Cabella BCT, de Oliveira SM, de Oliveira RS (2017) Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus. Childs Nerv Syst 33:1517–1524. https://doi.org/10.1007/s00381-017-3475-1
doi: 10.1007/s00381-017-3475-1 pubmed: 28623520
Bishop SM, Ercole A (2018) Multi-scale peak and trough detection optimised for periodic and quasi-periodic neuroscience data. Acta Nerochirurgica Suppl 126:189–195. https://doi.org/10.1007/978-3-319-65798-1_39
doi: 10.1007/978-3-319-65798-1_39
Calisto A, Galeano M, Serrano S, Calisto A, Azzerboni B (2013) A new approach for investigating intracranial pressure signal: filtering and morphological features extraction from continuous recording. IEEE Trans Biomed Eng 60:830–837. https://doi.org/10.1109/TBME.2012.2191550
doi: 10.1109/TBME.2012.2191550 pubmed: 22453602
Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg 59:817–821. https://doi.org/10.3171/jns.1983.59.5.0817
doi: 10.3171/jns.1983.59.5.0817 pubmed: 6619934
Cardoso ER, Reddy K, Bose D (1988) Effect of subarachnoid hemorrhage on intracranial pulse waves in cats. J Neurosurg 69:712–718. https://doi.org/10.3171/jns.1988.69.5.0712
doi: 10.3171/jns.1988.69.5.0712 pubmed: 3183732
Carrera E, Kim D-J, Castellani G, Zweifel C, Czosnyka Z, Kasprowicz M, Smielewski P, Pickard JD, Czosnyka M (2010) What shapes pulse amplitude of intracranial pressure? J Neurotrauma 27:317–324. https://doi.org/10.1089/neu.2009.0951
doi: 10.1089/neu.2009.0951 pubmed: 19852586
Chopp M, Portnoy HD (1980) Systems analysis of intracranial pressure. Comparison with volume-pressure test and CSF-pulse amplitude analysis. J Neurosurg 53:516–527. https://doi.org/10.3171/jns.1980.53.4.0516
doi: 10.3171/jns.1980.53.4.0516 pubmed: 7420174
Contant CF, Robertson CS, Crouch J, Gopinath SP, Narayan RK, Grossman RG (1995) Intracranial pressure waveform indices in transient and refractory intracranial hypertension. J Neurosci Methods 57:15–25. https://doi.org/10.1016/0165-0270(94)00106-q
doi: 10.1016/0165-0270(94)00106-q pubmed: 7791362
Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir 138:531–542. https://doi.org/10.1007/BF01411173
doi: 10.1007/BF01411173 pubmed: 8800328
Czosnyka M, Czosnyka Z, Momjian S, Pickard JD (2004) Cerebrospinal fluid dynamics. Physiol Meas 25:R51–R76. https://doi.org/10.1088/0967-3334/25/5/R01
doi: 10.1088/0967-3334/25/5/R01 pubmed: 15535175
Eklund A, Smielewski P, Chambers I, Alperin N, Malm J, Czosnyka M, Marmarou A (2007) Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput 45:719–735. https://doi.org/10.1007/s11517-007-0199-5
doi: 10.1007/s11517-007-0199-5 pubmed: 17634761
Elixmann IM, Hansinger J, Goffin C, Antes S, Radermacher K, Leonhardt S (2012) Single pulse analysis of intracranial pressure for a hydrocephalus implant. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, In, pp 3939–3942
Fan J-Y, Kirkness C, Vicini P, Burr R, Mitchell P (2008) Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care 17:545–554
doi: 10.4037/ajcc2008.17.6.545
Germon K (1988) Interpretation of ICP pulse waves to determine intracerebral compliance. J Neurosci Nurs 20:344–351. https://doi.org/10.1097/01376517-198812000-00004
doi: 10.1097/01376517-198812000-00004 pubmed: 2975310
Hu X, Glenn T, Scalzo F, Bergsneider M, Sarkiss C, Vespa P (2010) Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiol Meas 31:679–695. https://doi.org/10.1088/0967-3334/31/5/006
doi: 10.1088/0967-3334/31/5/006 pubmed: 20348611 pmcid: 2855777
Katzman R, Hussey F (1970) A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and Method. Neurology 20:534–544. https://doi.org/10.1212/wnl.20.6.534
doi: 10.1212/wnl.20.6.534 pubmed: 5463608
Kim D-J, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A, Smielewski P, Sutcliffe MPF, Pickard JD, Czosnyka M (2009) The monitoring of relative changes in compartmental compliances of brain. Physiol Meas 30:647–659. https://doi.org/10.1088/0967-3334/30/7/009
doi: 10.1088/0967-3334/30/7/009 pubmed: 19498218
Kim D-J, Czosnyka Z, Kasprowicz M, Smielewski P, Baledent O, Guerguerian A-M, Pickard JD, Czosnyka M (2012) Continuous monitoring of the Monro-Kellie doctrine: is it possible? J Neurotrauma 29:1354–1363. https://doi.org/10.1089/neu.2011.2018
doi: 10.1089/neu.2011.2018 pubmed: 21895518 pmcid: 3335107
Kirkness CJ, Mitchell PH, Burr RL, March KS, Newell DW (2000) Intracranial pressure waveform analysis: clinical and research implications. J Neurosci Nurs 32:271–277. https://doi.org/10.1097/01376517-200010000-00007
doi: 10.1097/01376517-200010000-00007 pubmed: 11089200
Kuramoto S, Moritaka K, Hayashi T, Honda E, Shojima T (1986) Non-invasive measurement in intracranial pressure and analysis of the pulse waveform. Neurol Res 8:93–96. https://doi.org/10.1080/01616412.1986.11739737
doi: 10.1080/01616412.1986.11739737 pubmed: 2875411
Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43:523–534. https://doi.org/10.3171/jns.1975.43.5.0523
doi: 10.3171/jns.1975.43.5.0523 pubmed: 1181384
Marmarou A, Shulman K, Rosende R (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344. https://doi.org/10.3171/jns.1978.48.3.0332
doi: 10.3171/jns.1978.48.3.0332 pubmed: 632857
Maset AL, Marmarou A, Ward JD, Choi S, Lutz HA, Brooks D, Moulton RJ, DeSalles A, Muizelaar JP, Turner H, Young HF (1987) Pressure-volume index in head injury. J Neurosurg 67:832–840. https://doi.org/10.3171/jns.1987.67.6.0832
doi: 10.3171/jns.1987.67.6.0832 pubmed: 3681422
Nucci CG, De Bonis P, Mangiola A, Santini P, Sciandrone M, Risi A, Anile C (2016) Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir 158:581–588. https://doi.org/10.1007/s00701-015-2672-5
doi: 10.1007/s00701-015-2672-5 pubmed: 26743919
Pillai S, Praharaj SS, Rao GSU, Kolluri VRS (2004) Cerebral perfusion pressure management of severe diffuse head injury: effect on brain compliance and intracranial pressure. Neurol India 52:67–71
pubmed: 15069242
Robertson CS, Narayan RK, Contant CF, Grossman RG, Gokaslan ZL, Pahwa R, Caram P, Bray RS, Sherwood AM (1989) Clinical experience with a continuous monitor of intracranial compliance. J Neurosurg 71:673–680. https://doi.org/10.3171/jns.1989.71.5.0673
doi: 10.3171/jns.1989.71.5.0673 pubmed: 2681566
Ryder HW, Espey FF, Kimbell FD, Penka EJ, Rosenauer A, Podolsky B, Evans JP (1953) The mechanism of the change in cerebrospinal fluid pressure following an induced change in the volume of the fluid space. J Lab Clin Med 41:428–435
pubmed: 13035279
Scalzo F, Asgari S, Kim S, Bergsneider M, Hu X (2012) Bayesian tracking of intracranial pressure signal morphology. Artif Intell Med 54:115–123. https://doi.org/10.1016/j.artmed.2011.08.007
doi: 10.1016/j.artmed.2011.08.007 pubmed: 21968205
Szewczykowski J, Śliwka S, Kunicki A, Dytko P, Korsak-Śliwka J (1977) A fast method of estimating the elastance of the intracranial system. J Neurosurg 47:19–26. https://doi.org/10.3171/jns.1977.47.1.0019
doi: 10.3171/jns.1977.47.1.0019 pubmed: 864503
Zeiler FA, Ercole A, Cabeleira M, Beqiri E, Zoerle T, Carbonara M, Stocchetti N, Menon DK, Smielewski P, Czosnyka M, Anke A, Beer R, Bellander BM, Buki A, Chevallard G, Chieregato A, Citerio G, Czeiter E, Depreitere B, Eapen G, Frisvold S, Helbok R, Jankowski S, Kondziella D, Koskinen LO, Meyfroidt G, Moeller K, Nelson D, Piippo-Karjalainen A, Radoi A, Ragauskas A, Raj R, Rhodes J, Rocka S, Rossaint R, Sahuquillo J, Sakowitz O, Stevanovic A, Sundström N, Takala R, Tamosuitis T, Tenovuo O, Vajkoczy P, Vargiolu A, Vilcinis R, Wolf S, Younsi A (2019) Compensatory-reserve-weighted intracranial pressure versus intracranial pressure for outcome association in adult traumatic brain injury: a CENTER-TBI validation study. Acta Neurochir 161:1275–1284. https://doi.org/10.1007/s00701-019-03915-3
doi: 10.1007/s00701-019-03915-3 pubmed: 31053909

Auteurs

Agnieszka Kazimierska (A)

Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland. agnieszka.kazimierska@pwr.edu.pl.

Magdalena Kasprowicz (M)

Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.

Marek Czosnyka (M)

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland.

Michał M Placek (MM)

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

Olivier Baledent (O)

Department of Medical Image Processing, CHU Amiens, University of Picardy Jules Verne, Amiens, France.

Peter Smielewski (P)

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

Zofia Czosnyka (Z)

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH