Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 04 2021
Historique:
received: 27 11 2020
accepted: 16 03 2021
entrez: 15 4 2021
pubmed: 16 4 2021
medline: 12 5 2021
Statut: epublish

Résumé

Ultraflexible optical devices have been used extensively in next-generation wearable electronics owing to their excellent conformability to human skins. Long-term health monitoring also requires the integration of ultraflexible optical devices with an energy-harvesting power source; to make devices self-powered. However, system-level integration of ultraflexible optical sensors with power sources is challenging because of insufficient air operational stability of ultraflexible polymer light-emitting diodes. Here we develop an ultraflexible self-powered organic optical system for photoplethysmogram monitoring by combining air-operation-stable polymer light-emitting diodes, organic solar cells, and organic photodetectors. Adopting an inverted structure and a doped polyethylenimine ethoxylated layer, ultraflexible polymer light-emitting diodes retain 70% of the initial luminance even after 11.3 h of operation under air. Also, integrated optical sensors exhibit a high linearity with the light intensity exponent of 0.98 by polymer light-emitting diode. Such self-powered, ultraflexible photoplethysmogram sensors perform monitoring of blood pulse signals as 77 beats per minute.

Identifiants

pubmed: 33854058
doi: 10.1038/s41467-021-22558-6
pii: 10.1038/s41467-021-22558-6
pmc: PMC8047008
doi:

Substances chimiques

Polymers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2234

Références

Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).
pubmed: 28447604 pmcid: 5414034 doi: 10.1038/ncomms14997
Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).
pubmed: 29466334 doi: 10.1038/nature25494
Kondo, M. et al. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. Sci. Adv. 6, 1–11 (2020).
doi: 10.1126/sciadv.aay6094
Sanford, J. L. & Eugene, S. S. Direct view active matrix VGA OLED‐on‐crystalline‐silicon display. Soc. Inf. Disp. Dig. 32, 376–379 (2001).
Lochner, C. M. et al. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).
pubmed: 25494220 doi: 10.1038/ncomms6745
Lee, Y. et al. Sticker-type hybrid photoplethysmogram monitoring system integrating CMOS IC with organic optical sensors. IEEE J. Emerg. Top. Circ. Syst. 7, 50–59 (2017).
doi: 10.1109/JETCAS.2016.2630301
Bilgaiyan, A. et al. Enhancing small molecule organic photodetector performance for reflectance mode photoplethysmography sensor applications. ACS Appl. Electron. Mater. 2, 1280–1288 (2020).
doi: 10.1021/acsaelm.0c00082
Xu, H. et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater. 29, 1–6 (2017).
doi: 10.1002/adma.201700975
Elsamnah, F. et al. Reflectance-based organic pulse meter sensor for wireless monitoring of photoplethysmogram signal. Biosensors 9, 1–13 (2019).
doi: 10.3390/bios9030087
Simone, G. et al. High-accuracy photoplethysmography array using near-infrared organic photodiodes with ultralow dark current. Adv. Opt. Mater. 8, 1901989 (2020).
doi: 10.1002/adom.201901989
Khan, Y. et al. A flexible organic reflectance oximeter array. Proc. Natl Acad. Sci. USA 115, E11015–E11024 (2018).
pubmed: 30404911 doi: 10.1073/pnas.1813053115 pmcid: 6255203
Lee, H. et al. Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4, 1–9 (2018).
doi: 10.1126/sciadv.aas9530
Yokota, T. et al. A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 3, 113–121 (2020).
doi: 10.1038/s41928-019-0354-7
Tordera, D. et al. Vein detection with near‐infrared organic photodetectors for biometric authentication. J. Soc. Inf. Disp. 28, 381–391 (2020).
doi: 10.1002/jsid.891
Lee, B. et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 663 (2020).
pubmed: 32005935 pmcid: 6994701 doi: 10.1038/s41467-020-14485-9
Gelinck, G. H. et al. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate. Org. Electron. 14, 2602–2609 (2013).
doi: 10.1016/j.orgel.2013.06.020
Basirico, L. et al. Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V. Nat. Commun. 7, 13063 (2016).
pubmed: 27708274 pmcid: 5059709 doi: 10.1038/ncomms13063
Zhang, M. & Yeow, J. T. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite. Carbon 156, 339–345 (2020).
doi: 10.1016/j.carbon.2019.09.062
Lu, H. et al. A self‐powered and stable all‐perovskite photodetector–solar cell nanosystem. Adv. Func. Mater. 26, 1296–1302 (2016).
doi: 10.1002/adfm.201504477
Jeon, Y. et al. A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 3, 1–10 (2018).
Yamagishi, K., Takeoka, S. & Fujie, T. Printed nanofilms mechanically conforming to living bodies. Biomater. Sci. 7, 520–531 (2019).
pubmed: 30648703 doi: 10.1039/C8BM01290C
Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).
pubmed: 20400953 pmcid: 3034223 doi: 10.1038/nmat2745
Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).
doi: 10.1126/science.1206157 pubmed: 21836009
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
pubmed: 23887430 doi: 10.1038/nature12314
Liu, Z. et al. Ultraflexible in‐plane micro‐supercapacitors by direct printing of solution‐processable electrochemically exfoliated graphene. Adv. Mater. 28, 2217–2222 (2016).
pubmed: 26784382 doi: 10.1002/adma.201505304
Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).
pubmed: 22473014 doi: 10.1038/ncomms1772
White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013).
doi: 10.1038/nphoton.2013.188
Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).
pubmed: 27152354 pmcid: 4846460 doi: 10.1126/sciadv.1501856
Yin, D. et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7, 11573 (2016).
pubmed: 27187936 pmcid: 4873666 doi: 10.1038/ncomms11573
Chiba, T. et al. Addition of lithium 8-quinolate into polyethylenimine electron-injection layer in OLEDs: Not only reducing driving voltage but also improving device lifetime. ACS Appl. Mater. Interfaces 9, 18113–18119 (2017).
pubmed: 28497949 doi: 10.1021/acsami.7b02658
Höfle, S., Schienle, A., Bruns, M., Lemmer, U. & Colsmann, A. Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed Zinc Oxide/Polyethylenimine interlayers. Adv. Mater. 26, 2750–2754 (2014).
pubmed: 24687875 doi: 10.1002/adma.201304666
Spreitzer, H. et al. Soluble phenyl-substituted PPVs–New materials for highly efficient polymer LEDs. Adv. Mater. 10, 1340–1343 (1998).
doi: 10.1002/(SICI)1521-4095(199811)10:16<1340::AID-ADMA1340>3.0.CO;2-G
Bae, S. J. et al. Enhancement of barrier properties using ultrathin hybrid passivation layer for organic light emitting diodes. Jpn. J. Appl. Phys. 45, 5970–5973 (2006).
doi: 10.1143/JJAP.45.5970
Park, S. H. K. et al. Ultrathin film encapsulation of an OLED by ALD. Electrochem. Solid-State Lett. 8, H21–H23 (2005).
doi: 10.1149/1.1850396
Kim, G. H., Oh, J., Yang, Y. S., Do, L. M. & Suh, K. S. Lamination process encapsulation for longevity of plastic-based organic light-emitting devices. Thin Solid Films 467, 1–3 (2004).
doi: 10.1016/j.tsf.2004.02.036
Jeong, F. G. et al. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale 9, 6370–6379 (2017).
pubmed: 28451680 doi: 10.1039/C7NR01166K
Seo, H. K. et al. Laminated graphene films for flexible transparent thin film encapsulation. ACS Appl. Mater. Interfaces 8, 14725–14731 (2016).
pubmed: 27253603 doi: 10.1021/acsami.6b01639
Li, H.-Y., Liu, Y.-F., Duan, Y., Yang, Y.-Q. & Lu, Y.-N. Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices. Materials 8, 600–610 (2015).
pubmed: 28787960 pmcid: 5455283 doi: 10.3390/ma8020600
Yang, Y. Q. et al. Realization of thin film encapsulation by atomic layer deposition of Al
doi: 10.1021/jp406738h
Duan, Y. et al. High-performance barrier using a dual-layer inorganic/organic hybrid thin-film encapsulation for organic light-emitting diodes. Org. Electron. 15, 1936–1941 (2014).
doi: 10.1016/j.orgel.2014.05.001
Grover, R., Srivastava, R., Kamalasanan, M. N. & Mehta, D. S. Multilayer thin film encapsulation for organic light emitting diodes. RSC Adv. 4, 10808–10814 (2014).
doi: 10.1039/C3RA46077K
Wu, Z., Wang, L., Chang, C. & Qiu, Y. A hybrid encapsulation of organic light-emitting devices. J. Phys. D. Appl. Phys. 38, 981–984 (2005).
doi: 10.1088/0022-3727/38/7/003
Kim, G. H., Oh, J., Yang, Y. S., Do, L. M. & Suh, K. S. Encapsulation of organic light-emitting devices by means of photopolymerized polyacrylate films. Polymer 45, 1879–1883 (2004).
doi: 10.1016/j.polymer.2004.01.038
Kho, S., Cho, D. & Jung, D. Passivation of organic light-emitting diodes by the plasma polymerized para-xylene thin film. Jpn. J. Appl. Phys. 41, L1336–L1338 (2002).
doi: 10.1143/JJAP.41.L1336
Yamashita, K., Mori, T. & Mizutani, T. Encapsulation of organic light-emitting diode using thermal chemical-vapour-deposition polymer film. J. Phys. D. Appl. Phys. 34, 740–743 (2001).
doi: 10.1088/0022-3727/34/5/312
Dennler, G., Lungenschmied, C., Neugebauer, H., Sariciftci, N. S. & Labouret, A. Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration. J. Mater. Res. 20, 3224–3233 (2005).
doi: 10.1557/jmr.2005.0399
Song, K. et al. Subdermal flexible solar cell arrays for powering medical electronic implants. Adv. Healthc. Mater. 5, 1572–1580 (2016).
pubmed: 27139339 doi: 10.1002/adhm.201600222
Maeda, Y. et al. Comparison of reflected green light and infrared photoplethysmography. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2270–2272 (IEEE, 2008). https://doi.org/10.1109/IEMBS.2008.4649649 .
Maeda, Y., Sekine, M. & Tamura, T. The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 35, 829–834 (2011).
pubmed: 20703690 doi: 10.1007/s10916-010-9506-z
Lee, J. et al. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1724–1727 (IEEE, 2013). https://doi.org/10.1109/EMBC.2013.6609852 .
Maeda, Y., Sekine, M. & Tamura, T. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. J. Med. Syst. 35, 969–976 (2011).
pubmed: 20703691 doi: 10.1007/s10916-010-9505-0
Kimura, H. et al. High operation stability of ultraflexible organic solar cells with ultraviolet‐filtering substrates. Adv. Mater. 31, 1808033 (2019).
doi: 10.1002/adma.201808033
Lee, H. K. H. et al. Organic photovoltaic cells—promising indoor light harvesters for self-sustainable electronics. J. Mater. Chem. A 6, 5618–5626 (2018).
doi: 10.1039/C7TA10875C
Fuketa, H. et al. 16.4 Energy-autonomous fever alarm armband integrating fully flexible solar cells, piezoelectric speaker, temperature detector, and 12V organic complementary FET circuits. 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers 58, 1–3 (IEEE, 2015).
Ostfeld, A. E., Gaikwad, A. M., Khan, Y. & Arias, A. C. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 6, 26122 (2016).
pubmed: 27184194 pmcid: 4869018 doi: 10.1038/srep26122
Liu, R. et al. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater. 10, 1–8 (2020).
Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).
pubmed: 30258137 doi: 10.1038/s41586-018-0536-x
Saito, M. et al. Highly efficient and stable solar cells based on thiazolothiazole and naphthobisthiadiazole copolymers. Sci. Rep. 5, 14202 (2015).
pubmed: 26395221 pmcid: 4585800 doi: 10.1038/srep14202
Vohra, V. et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nat. Photonics 9, 403–408 (2015).
doi: 10.1038/nphoton.2015.84

Auteurs

Hiroaki Jinno (H)

Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan.
Center for Emergent Matter Science, RIKEN, Saitama, Japan.
Nanomaterials Engineering Research Group, ETH zürich, Zürich, Switzerland.

Tomoyuki Yokota (T)

Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan.

Mari Koizumi (M)

Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan.

Wakako Yukita (W)

Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan.

Masahiko Saito (M)

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Hiroshima, Japan.

Itaru Osaka (I)

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Hiroshima, Japan.

Kenjiro Fukuda (K)

Center for Emergent Matter Science, RIKEN, Saitama, Japan.
Thin-film Device Laboratory, RIKEN, Saitama, Japan.

Takao Someya (T)

Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan. someya@ee.t.u-tokyo.ac.jp.
Center for Emergent Matter Science, RIKEN, Saitama, Japan. someya@ee.t.u-tokyo.ac.jp.
Thin-film Device Laboratory, RIKEN, Saitama, Japan. someya@ee.t.u-tokyo.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH