Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid-Polymer Hybrid Nanoparticles.


Journal

International journal of nanomedicine
ISSN: 1178-2013
Titre abrégé: Int J Nanomedicine
Pays: New Zealand
ID NLM: 101263847

Informations de publication

Date de publication:
2021
Historique:
received: 15 01 2021
accepted: 10 03 2021
entrez: 15 4 2021
pubmed: 16 4 2021
medline: 8 5 2021
Statut: epublish

Résumé

Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo. Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors. The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice. These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.

Sections du résumé

BACKGROUND BACKGROUND
Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo.
METHODS METHODS
Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors.
RESULTS RESULTS
The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice.
CONCLUSION CONCLUSIONS
These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.

Identifiants

pubmed: 33854311
doi: 10.2147/IJN.S293480
pii: 293480
pmc: PMC8039437
doi:

Substances chimiques

Coumarins 0
Lipids 0
Naphthoquinones 0
Polymers 0
Thiazoles 0
Transferrin 0
coumarin 6 0
plumbagin YAS4TBQ4OQ

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2615-2631

Informations de copyright

© 2021 Sakpakdeejaroen et al.

Déclaration de conflit d'intérêts

The authors report no conflicts of interest in this work.

Références

Biochim Biophys Acta. 2012 Mar;1820(3):291-317
pubmed: 21851850
Int J Nanomedicine. 2015 Jul 16;10:4535-47
pubmed: 26213467
Drug Deliv. 2010 Apr;17(3):103-13
pubmed: 20100068
Sci Rep. 2013;3:2534
pubmed: 23982586
Nanomedicine (Lond). 2014 Jan;9(1):121-34
pubmed: 24354814
J Pharmacol Exp Ther. 2006 Aug;318(2):484-94
pubmed: 16632641
J Cell Biochem. 2008 Dec 15;105(6):1461-71
pubmed: 18980240
Drug Deliv. 2015 Feb;22(2):182-90
pubmed: 24215373
J Pharm Pharmacol. 1996 Nov;48(11):1128-32
pubmed: 8961159
Int J Pharm. 2010 May 10;390(2):234-41
pubmed: 20156537
J Control Release. 2013 Dec 28;172(3):782-94
pubmed: 24075927
J Control Release. 2000 Mar 1;65(1-2):271-84
pubmed: 10699287
Ther Deliv. 2013 Oct;4(10):1247-59
pubmed: 24116910
Int J Pharm. 2011 Aug 30;415(1-2):34-52
pubmed: 21640806
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43
pubmed: 23872180
Eur J Cancer. 2009 Jan;45(2):228-47
pubmed: 19097774
Ther Deliv. 2013 May;4(5):629-40
pubmed: 23647279
Metallomics. 2014 Nov;6(11):2025-33
pubmed: 25188862
Mol Pharm. 2017 Jun 5;14(6):1883-1897
pubmed: 28402673
Nanomedicine (Lond). 2013 Feb;8(2):181-92
pubmed: 22891867
Cancer Lett. 2008 Jan 18;259(1):82-98
pubmed: 18023967
Nat Biotechnol. 2015 Sep;33(9):941-51
pubmed: 26348965
J Control Release. 2009 Dec 3;140(2):95-9
pubmed: 19709637
Cancer Res. 1995 Sep 1;55(17):3752-6
pubmed: 7641188
Int J Nanomedicine. 2014 May 06;9 Suppl 1:51-63
pubmed: 24872703
Mol Pharm. 2012 Dec 3;9(12):3442-51
pubmed: 23098233
Toxicol Appl Pharmacol. 2010 Aug 15;247(1):41-52
pubmed: 20576514
Cancer Prev Res (Phila). 2015 May;8(5):375-86
pubmed: 25627799
Pharm Res. 2000 Oct;17(10):1250-8
pubmed: 11145231
Sci Rep. 2018 May 8;8(1):7268
pubmed: 29740149
Ann Oncol. 2008 Apr;19(4):696-705
pubmed: 18187487
Medicine (Baltimore). 2017 Jul;96(30):e7405
pubmed: 28746182
J Biomed Nanotechnol. 2020 Jan 1;16(1):85-100
pubmed: 31996288
Drug Des Devel Ther. 2015 Mar 16;9:1601-26
pubmed: 25834400
Bone Res. 2013 Dec 31;1(4):362-70
pubmed: 26273514
IET Nanobiotechnol. 2015 Oct;9(5):264-72
pubmed: 26435279
Sci Rep. 2018 Jul 9;8(1):10348
pubmed: 29985441
J Control Release. 2011 Aug 25;154(1):20-6
pubmed: 21539872
J Drug Target. 2002 Dec;10(8):585-91
pubmed: 12683662
Pharm Res. 2008 Sep;25(9):2171-80
pubmed: 18213451
J Interdiscip Nanomed. 2019 Jun 26;4(2):54-71
pubmed: 31341642
J Control Release. 2017 Jan 28;246:79-87
pubmed: 27993600
Med Res Rev. 2012 Nov;32(6):1131-58
pubmed: 23059762
Br J Pharmacol. 2012 Feb;165(4b):1084-96
pubmed: 21658027
J Control Release. 2016 Aug 10;235:337-351
pubmed: 27297779
Molecules. 2014 Sep 17;19(9):14902-18
pubmed: 25232709
Biomaterials. 2010 Oct;31(30):7748-57
pubmed: 20673685
ACS Nano. 2013 Mar 26;7(3):1961-73
pubmed: 23402533
ACS Nano. 2015 May 26;9(5):5104-16
pubmed: 25894117
J Biol Chem. 1951 Nov;193(1):265-75
pubmed: 14907713
ACS Nano. 2008 Aug;2(8):1696-702
pubmed: 19206374
Drug Deliv. 2011 Sep-Oct;18(7):511-22
pubmed: 21793763

Auteurs

Intouch Sakpakdeejaroen (I)

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.

Sukrut Somani (S)

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.

Partha Laskar (P)

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.

Margaret Mullin (M)

College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.

Christine Dufès (C)

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH