Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid-Polymer Hybrid Nanoparticles.
Animals
Apoptosis
/ drug effects
Cell Line, Tumor
Cell Proliferation
/ drug effects
Coumarins
/ pharmacology
Drug Liberation
Endocytosis
/ drug effects
Female
Humans
Injections, Intravenous
Lipids
/ chemistry
Melanoma, Experimental
/ drug therapy
Mice, Inbred BALB C
Nanoparticles
/ chemistry
Naphthoquinones
/ administration & dosage
Polymers
/ chemistry
Skin Neoplasms
/ drug therapy
Thiazoles
/ pharmacology
Transferrin
/ metabolism
cancer therapy
lipid–polymer hybrid nanoparticles
plumbagin
transferrin
tumor targeting
Journal
International journal of nanomedicine
ISSN: 1178-2013
Titre abrégé: Int J Nanomedicine
Pays: New Zealand
ID NLM: 101263847
Informations de publication
Date de publication:
2021
2021
Historique:
received:
15
01
2021
accepted:
10
03
2021
entrez:
15
4
2021
pubmed:
16
4
2021
medline:
8
5
2021
Statut:
epublish
Résumé
Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo. Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors. The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice. These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.
Sections du résumé
BACKGROUND
BACKGROUND
Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo.
METHODS
METHODS
Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors.
RESULTS
RESULTS
The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice.
CONCLUSION
CONCLUSIONS
These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.
Identifiants
pubmed: 33854311
doi: 10.2147/IJN.S293480
pii: 293480
pmc: PMC8039437
doi:
Substances chimiques
Coumarins
0
Lipids
0
Naphthoquinones
0
Polymers
0
Thiazoles
0
Transferrin
0
coumarin 6
0
plumbagin
YAS4TBQ4OQ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2615-2631Informations de copyright
© 2021 Sakpakdeejaroen et al.
Déclaration de conflit d'intérêts
The authors report no conflicts of interest in this work.
Références
Biochim Biophys Acta. 2012 Mar;1820(3):291-317
pubmed: 21851850
Int J Nanomedicine. 2015 Jul 16;10:4535-47
pubmed: 26213467
Drug Deliv. 2010 Apr;17(3):103-13
pubmed: 20100068
Sci Rep. 2013;3:2534
pubmed: 23982586
Nanomedicine (Lond). 2014 Jan;9(1):121-34
pubmed: 24354814
J Pharmacol Exp Ther. 2006 Aug;318(2):484-94
pubmed: 16632641
J Cell Biochem. 2008 Dec 15;105(6):1461-71
pubmed: 18980240
Drug Deliv. 2015 Feb;22(2):182-90
pubmed: 24215373
J Pharm Pharmacol. 1996 Nov;48(11):1128-32
pubmed: 8961159
Int J Pharm. 2010 May 10;390(2):234-41
pubmed: 20156537
J Control Release. 2013 Dec 28;172(3):782-94
pubmed: 24075927
J Control Release. 2000 Mar 1;65(1-2):271-84
pubmed: 10699287
Ther Deliv. 2013 Oct;4(10):1247-59
pubmed: 24116910
Int J Pharm. 2011 Aug 30;415(1-2):34-52
pubmed: 21640806
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43
pubmed: 23872180
Eur J Cancer. 2009 Jan;45(2):228-47
pubmed: 19097774
Ther Deliv. 2013 May;4(5):629-40
pubmed: 23647279
Metallomics. 2014 Nov;6(11):2025-33
pubmed: 25188862
Mol Pharm. 2017 Jun 5;14(6):1883-1897
pubmed: 28402673
Nanomedicine (Lond). 2013 Feb;8(2):181-92
pubmed: 22891867
Cancer Lett. 2008 Jan 18;259(1):82-98
pubmed: 18023967
Nat Biotechnol. 2015 Sep;33(9):941-51
pubmed: 26348965
J Control Release. 2009 Dec 3;140(2):95-9
pubmed: 19709637
Cancer Res. 1995 Sep 1;55(17):3752-6
pubmed: 7641188
Int J Nanomedicine. 2014 May 06;9 Suppl 1:51-63
pubmed: 24872703
Mol Pharm. 2012 Dec 3;9(12):3442-51
pubmed: 23098233
Toxicol Appl Pharmacol. 2010 Aug 15;247(1):41-52
pubmed: 20576514
Cancer Prev Res (Phila). 2015 May;8(5):375-86
pubmed: 25627799
Pharm Res. 2000 Oct;17(10):1250-8
pubmed: 11145231
Sci Rep. 2018 May 8;8(1):7268
pubmed: 29740149
Ann Oncol. 2008 Apr;19(4):696-705
pubmed: 18187487
Medicine (Baltimore). 2017 Jul;96(30):e7405
pubmed: 28746182
J Biomed Nanotechnol. 2020 Jan 1;16(1):85-100
pubmed: 31996288
Drug Des Devel Ther. 2015 Mar 16;9:1601-26
pubmed: 25834400
Bone Res. 2013 Dec 31;1(4):362-70
pubmed: 26273514
IET Nanobiotechnol. 2015 Oct;9(5):264-72
pubmed: 26435279
Sci Rep. 2018 Jul 9;8(1):10348
pubmed: 29985441
J Control Release. 2011 Aug 25;154(1):20-6
pubmed: 21539872
J Drug Target. 2002 Dec;10(8):585-91
pubmed: 12683662
Pharm Res. 2008 Sep;25(9):2171-80
pubmed: 18213451
J Interdiscip Nanomed. 2019 Jun 26;4(2):54-71
pubmed: 31341642
J Control Release. 2017 Jan 28;246:79-87
pubmed: 27993600
Med Res Rev. 2012 Nov;32(6):1131-58
pubmed: 23059762
Br J Pharmacol. 2012 Feb;165(4b):1084-96
pubmed: 21658027
J Control Release. 2016 Aug 10;235:337-351
pubmed: 27297779
Molecules. 2014 Sep 17;19(9):14902-18
pubmed: 25232709
Biomaterials. 2010 Oct;31(30):7748-57
pubmed: 20673685
ACS Nano. 2013 Mar 26;7(3):1961-73
pubmed: 23402533
ACS Nano. 2015 May 26;9(5):5104-16
pubmed: 25894117
J Biol Chem. 1951 Nov;193(1):265-75
pubmed: 14907713
ACS Nano. 2008 Aug;2(8):1696-702
pubmed: 19206374
Drug Deliv. 2011 Sep-Oct;18(7):511-22
pubmed: 21793763