Nep1-like proteins as a target for plant pathogen control.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
04 2021
Historique:
received: 19 02 2021
accepted: 14 03 2021
revised: 27 04 2021
pubmed: 16 4 2021
medline: 24 8 2021
entrez: 15 4 2021
Statut: epublish

Résumé

The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.

Identifiants

pubmed: 33857257
doi: 10.1371/journal.ppat.1009477
pii: PPATHOGENS-D-21-00274
pmc: PMC8078777
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1009477

Déclaration de conflit d'intérêts

We have read the journal’s policy and the authors of this manuscript have the following competing interests: Gregor Anderluh, Marjetka Podobnik, Tea Lenarčič, Vesna Hodnik, Stanislav Gobec, Boris Brus, Izidor Sosič, Thorsten Nuernberger, Isabell Albert and Hannah Bohm are inventors of a patent application covering the compounds described in this article.

Références

Curr Opin Plant Biol. 2017 Aug;38:25-33
pubmed: 28460241
Expert Opin Drug Discov. 2021 May;16(5):497-511
pubmed: 33874825
Plant J. 2002 Nov;32(3):375-90
pubmed: 12410815
J Agric Food Chem. 2015 Sep 2;63(34):7463-8
pubmed: 26289797
Nat Protoc. 2015 May;10(5):733-55
pubmed: 25855957
Plant Physiol. 2001 Nov;127(3):832-41
pubmed: 11706166
J Comput Aided Mol Des. 2010 Jun;24(6-7):591-604
pubmed: 20354892
Lett Appl Microbiol. 2010 Dec;51(6):603-10
pubmed: 21039667
Mycol Res. 2005 Dec;109(Pt 12):1373-85
pubmed: 16353637
Nature. 2009 Sep 17;461(7262):393-8
pubmed: 19741609
PLoS Pathog. 2019 Sep 3;15(9):e1007951
pubmed: 31479498
Annu Rev Phytopathol. 2016 Aug 4;54:419-41
pubmed: 27359369
Plant Cell. 2006 Dec;18(12):3721-44
pubmed: 17194768
Phys Rev B Condens Matter. 1996 Jul 15;54(3):1703-1710
pubmed: 9986014
Rev Environ Contam Toxicol. 2000;164:1-26
pubmed: 12587832
Plant J. 2002 Nov;32(3):361-73
pubmed: 12410814
Genet Mol Res. 2011 May 17;10(2):910-22
pubmed: 21644208
J Mol Recognit. 2010 Jan-Feb;23(1):1-64
pubmed: 20017116
Toxicol Lett. 2016 May 13;249:1-4
pubmed: 27016407
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
Toxins (Basel). 2019 Sep 19;11(9):
pubmed: 31546810
Int Microbiol. 2008 Mar;11(1):1-9
pubmed: 18683626
PLoS Pathog. 2014 Nov 06;10(11):e1004491
pubmed: 25375108
J Phys Chem B. 2008 Jul 31;112(30):9020-41
pubmed: 18593145
Mol Plant Microbe Interact. 2012 May;25(5):697-708
pubmed: 22235872
Int J Mol Sci. 2014 Nov 06;15(11):20403-12
pubmed: 25383681
J Med Chem. 2004 Mar 25;47(7):1739-49
pubmed: 15027865
Biopolymers. 1992 May;32(5):523-35
pubmed: 1515543
J Chem Theory Comput. 2009 Sep 8;5(9):2371-7
pubmed: 26616618
ISRN Pharm. 2012;2012:195727
pubmed: 22830056
J Chem Theory Comput. 2012 Apr 10;8(4):1493-502
pubmed: 26596759
Science. 2017 Dec 15;358(6369):1431-1434
pubmed: 29242345
Environ Int. 2017 Feb;99:29-42
pubmed: 27887783
J Chem Theory Comput. 2017 Jan 10;13(1):340-352
pubmed: 28001405
Pest Manag Sci. 2002 Sep;58(9):944-50
pubmed: 12233186
Nat Chem Biol. 2005 Aug;1(3):146-8
pubmed: 16408018
Phytochemistry. 2006 Aug;67(16):1800-7
pubmed: 16430931
Pest Manag Sci. 2002 Sep;58(9):876-88
pubmed: 12233177
Adv Drug Deliv Rev. 2016 Jun 1;101:34-41
pubmed: 27154268
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16955-60
pubmed: 25368167
J Chem Theory Comput. 2011 Feb 8;7(2):525-37
pubmed: 26596171
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10359-64
pubmed: 19520828
Annu Rev Phytopathol. 2019 Aug 25;57:367-386
pubmed: 31283435
Mol Plant Pathol. 2004 Jul 1;5(4):353-9
pubmed: 20565603
J Chem Phys. 2007 Sep 21;127(11):114105
pubmed: 17887826

Auteurs

Katja Pirc (K)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Vesna Hodnik (V)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.

Tina Snoj (T)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Tea Lenarčič (T)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Simon Caserman (S)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Marjetka Podobnik (M)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Hannah Böhm (H)

Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany.

Isabell Albert (I)

Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany.

Anita Kotar (A)

Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.

Janez Plavec (J)

Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.

Jure Borišek (J)

Theory Department, National Institute of Chemistry, Ljubljana, Slovenia.

Martina Damuzzo (M)

CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy.

Alessandra Magistrato (A)

CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy.

Boris Brus (B)

Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.

Izidor Sosič (I)

Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.

Stanislav Gobec (S)

Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.

Thorsten Nürnberger (T)

Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany.
Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa.

Gregor Anderluh (G)

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum

Classifications MeSH