In Vivo and Ex Vivo Patient-Derived Tumor Xenograft Models of Lymphoma for Drug Discovery.
PDTX
applications
clonal determination
drug discovery
genomic correspondence
immuno-phenotype
implants and routes
lymphoma
target therapy
Journal
Current protocols
ISSN: 2691-1299
Titre abrégé: Curr Protoc
Pays: United States
ID NLM: 101773894
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
entrez:
16
4
2021
pubmed:
17
4
2021
medline:
17
6
2021
Statut:
ppublish
Résumé
In the hemato-oncology field, remarkable scientific progress has been achieved, primarily propelled by the discovery of new technologies, improvement in genomics, and novel in vitro and in vivo models. The establishment of multiple cell line collections and the development of instrumental mouse models enhanced our ability to discover effective therapeutics. However, cancer models that faithfully mimic individual cancers are still imperfect. Patient-derived tumor xenografts (PDTXs) have emerged as a powerful tool for identifying the mechanisms which drive tumorigenesis and for testing potential therapeutic interventions. The recognition that PDTXs can maintain many of the donor samples' properties enabled the development of new strategies for discovering and implementing therapies. Described in this article are protocols for the generation and characterization of lymphoma PDTXs that may be used as the basis of shared procedures. Universal protocols will foster the model utilization, enable the integration of public and private repositories, and aid in the development of shared platforms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Tissue handling and cryopreservation of primary and PDTX samples Basic Protocol 2: Performing tumor implant in immunocompromised mice PDTX models Alternate Protocol 1: Intra-medullary femoral injection Alternate Protocol 2: Intravenous injection Alternate Protocol 3: Intraperitoneal injection Support Protocol 1: Phenotypical characterization of PDTXs by flow cytometry Support Protocol 2: Biological and molecular characterization of PDTX tumors by PCR detection of IGK, IGH, and TCR rearrangements Basic Protocol 3: Harvesting PDTX-derived tumor cells for ex vivo experiments Basic Protocol 4: In vivo testing of multiple compounds in a PDTX mouse model.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e96Subventions
Organisme : NIH HHS
ID : P01 CA229086
Pays : United States
Organisme : NIH HHS
ID : P01CA229100
Pays : United States
Organisme : NIH HHS
ID : CA214274
Pays : United States
Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Abate, F., Todaro, M., van der Krogt, J., Boi, M., Landra, I., Machiorlatti, R., … Inghirami, G. (2015). A novel patient derived tumorgraft model with TRAF1-ALK anaplastic large cell lymphoma translocation. Leukemia, 29, 1390-1401. doi: 10.1038/leu.2014.347.
Bachmann, P. S., & Lock, R. B. (2007). In vivo models of childhood leukemia for preclinical drug testing. Current Drug Targets, 8, 773-783. doi: 10.2174/138945007780830809.
Ben-David, U., Ha, G., Tseng, Y. Y., Greenwald, N. F., Oh, C., Shih, J., … Golub, T. R. (2017). Patient-derived xenografts undergo mouse-specific tumor evolution. Nature Genetics, 49, 1567-1575. doi: 10.1038/ng.3967.
Bispo, J. A. B., Pinheiro, P. S., & Kobetz, E. K. (2020). Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harbor perspectives in medicine, 10, a034819. doi: 10.1101/cshperspect.a034819.
Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., … Mazar, A. P. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia, 17, 735-741. doi: 10.1016/j.neo.2015.09.004.
Brehm, M. A., Kenney, L. L., Wiles, M. V., Low, B. E., Tisch, R. M., Burzenski, L., … Shultz, L. D. (2019). Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB Journal, 33, 3137-3151. doi: 10.1096/fj.201800636R.
Brendel, C., Rio, P., & Verhoeyen, E. (2020). Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochemical Pharmacology, 174, 113711. doi: 10.1016/j.bcp.2019.113711.
Byrne, A. T., Alferez, D. G., Amant, F., Annibali, D., Arribas, J., Biankin, A. V., … Trusolino, L. (2017). Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 17, 254-268. doi: 10.1038/nrc.2016.140.
Chapuy, B., Cheng, H., Watahiki, A., Ducar, M. D., Tan, Y., Chen, L., … Shipp, M. A. (2016). Diffuse large B-cell lymphoma patient-derived xenograft models capture the molecular and biological heterogeneity of the disease. Blood, 127, 2203-2213. doi: 10.1182/blood-2015-09-672352.
Cossarizza, A., Chang, H. D., Radbruch, A., Akdis, M., Andra, I., Annunziato, F., … Zimmermann, J. (2017). Guidelines for the use of flow cytometry and cell sorting in immunological studies. European Journal of Immunology, 47, 1584-1797. doi: 10.1002/eji.201646632.
Cushman-Vokoun, A. M., Connealy, S., & Greiner, T. C. (2010). Assay design affects the interpretation of T-cell receptor gamma gene rearrangements: comparison of the performance of a one-tube assay with the BIOMED-2-based TCRG gene clonality assay. The Journal of Molecular Diagnostics, 12(6), 787-796. doi: 10.2353/jmoldx.2010.090183.
Denker, S., Bittner, A., Na, I. K., Kase, J., Frick, M., Anagnostopoulos, I., … Schmitt, C. A. (2019). A Phase I/II first-line study of R-CHOP plus B-cell receptor/NF-κB-double-targeting to molecularly assess therapy response. International Journal of Hematologic Oncology, 8, IJH2O. doi: 10.2217/ijh-2019-0010.
DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., … Welm, B. E. (2013). Patient-derived models of human breast cancer: Protocols for in vitro and in vivo applications in tumor biology and translational medicine. Current Protocols in Pharmacology, 60(1), 14.23.1-14.23.43. doi: 10.1002/0471141755.ph1423s60.
Dobrolecki, L. E., Airhart, S. D., Alferez, D. G., Aparicio, S., Behbod, F., Bentires-Alj, M., … Lewis, M. T. (2016). Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer and Metastasis Reviews, 35, 547-573. doi: 10.1007/s10555-016-9653-x.
Donnou, S., Galand, C., Touitou, V., Sautes-Fridman, C., Fabry, Z., & Fisson, S. (2012). Murine models of B-cell lymphomas: Promising tools for designing cancer therapies. Advances in Hematology, 2012, 701704. doi: 10.1155/2012/701704.
Fiore, D., Cappelli, L. V., Broccoli, A., Zinzani, P. L., Chan, W. C., & Inghirami, G. (2020). Peripheral T cell lymphomas: From the bench to the clinic. Nature Reviews Cancer, 20, 323-342. doi: 10.1038/s41568-020-0247-0.
Forde, S., Matthews, J. D., Jahangiri, L., Lee, L. C., Prokoph, N., Malcolm, T. I. M., … Turner, S. D. (2020). Paediatric Burkitt lymphoma patient-derived xenografts capture disease characteristics over time and are a model for therapy. British Journal of Haematology, 192(2), 354-365. doi: 10.1111/bjh.17043.
Gerstein, R., Zhou, Z., Zhang, H., Evens, A., Walsh, N., Shultz, L., … Rosmarin, A. G. (2015). Patient-derived xenografts (PDX) of B cell lymphoma in NSG mice: A mouse avatar for developing personalized medicine. Blood, 126(23), 5408. doi: 10.1182/blood.V126.23.5408.5408.
Herman, P., Pauwels, K. (2015). Biosafety recommendations on the handling of animal cell cultures. In M. Al-Rubeai (Ed.), Animal Cell Culture. Cell Engineering, Vol 9 (pp 689-716). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-10320-4_22.
Hidalgo, M., Amant, F., Biankin, A. V., Budinska, E., Byrne, A. T., Caldas, C., … Villanueva, A. (2014). Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discovery, 4, 998-1013. doi: 10.1158/2159-8290.CD-14-0001.
Jaffe, E. S. (2019). Diagnosis and classification of lymphoma: Impact of technical advances. Seminars in Hematology, 56, 30-36. doi: 10.1053/j.seminhematol.2018.05.007.
Karamboulas, C., Meens, J., & Ailles, L. (2020). Establishment and use of patient-derived xenograft models for drug testing in head and neck squamous cell carcinoma. STAR Protocols, 1, 100024. doi: 10.1016/j.xpro.2020.100024.
Knecht, H., Righolt, C., & Mai, S. (2013). Genomic instability: The driving force behind refractory/relapsing Hodgkin's lymphoma. Cancers, 5, 714-725. doi: 10.3390/cancers5020714.
Koga, Y., & Ochiai, A. (2019). Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells, 8, 418. doi: 10.3390/cells8050418.
Lai, Y., Wei, X., Lin, S., Qin, L., Cheng, L., & Li, P. (2017). Current status and perspectives of patient-derived xenograft models in cancer research. Journal of Hematology & Oncology, 10, 106. doi: 10.1186/s13045-017-0470-7.
Lampreht Tratar, U., Horvat, S., & Cemazar, M. (2018). Transgenic mouse models in cancer research. Frontiers in Oncology, 8, 268. doi: 10.3389/fonc.2018.00268.
Langerak, A. W., Groenen, P. J., Brüggemann, M., Beldjord, K., Bellan, C., Bonello, L., … van Dongen, J. J. M. (2012). EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia, 26(10), 2159-2171. doi: 10.1038/leu.2012.246.
Maecker, H. T., & Trotter, J. (2006). Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry. Part A, 69, 1037-1042. doi: 10.1002/cyto.a.20333.
Mattar, M., McCarthy, C. R., Kulick, A. R., Qeriqi, B., Guzman, S., & de Stanchina, E. (2018). Establishing and maintaining an extensive library of patient-derived xenograft models. Frontiers in Oncology, 8, 19. doi: 10.3389/fonc.2018.00019.
Meehan, T. F., Conte, N., Goldstein, T., Inghirami, G., Murakami, M. A., Brabetz, S., … Bult, C. J. (2017). PDX-MI: Minimal information for patient-derived tumor xenograft models. Cancer Research, 77, e62-e66. doi: 10.1158/0008-5472.CAN-17-0582.
Mhaidly, R., & Verhoeyen, E. (2020). Humanized mice are precious tools for preclinical evaluation of CAR T and CAR NK cell therapies. Cancers, 12, 1915. doi: 10.3390/cancers12071915.
Mohammad, R. M., Aboukameel, A., Nabha, S., Ibrahim, D., & Al-Katib, A. (2002). Rituximab, cyclophosphamide, dexamethasone (RCD) regimen induces cure in WSU-WM xenograft model and a partial remission in previously treated Waldenstrom's macroglobulinemia patient. Journal of Drug Targeting, 10(5), 405-411. doi: 10.1080/1061186021000001850.
Morton, J. J., Alzofon, N., & Jimeno, A. (2020). The humanized mouse: Emerging translational potential. Molecular Carcinogenesis, 59, 830-838. doi: 10.1002/mc.23195.
Murayama, T., & Gotoh, N. (2019). Patient-derived xenograft models of breast cancer and their application. Cells, 8, 621. doi: 10.3390/cells8060621.
Ng, S. Y., Yoshida, N., Christie, A. L., Ghandi, M., Dharia, N. V., Dempster, J., … Koch, R. (2018). Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nature Communications, 9, 2024. doi: 10.1038/s41467-018-04356-9.
Opinto, G., Vegliante, M. C., Negri, A., Skrypets, T., Loseto, G., Pileri, S. A., … Ciavarella, S. (2020). The tumor microenvironment of DLBCL in the computational era. Frontiers in Oncology, 10, 351. doi: 10.3389/fonc.2020.00351.
Park, D., Wang, D., Chen, G., & Deng, X. (2016). Establishment of patient-derived xenografts in mice. Bio-Protocol, 6, e2008. doi: 10.21769/BioProtoc.2008.
Peterson, N. C. (2008). From bench to cageside: Risk assessment for rodent pathogen contamination of cells and biologics. Ilar Journal, 49, 310-315. doi: 10.1093/ilar.49.3.310.
Pizzi, M., Boi, M., Bertoni, F., & Inghirami, G. (2016). Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia, 30, 1805-1815. doi: 10.1038/leu.2016.161.
Pizzi, M., & Inghirami, G. (2017). Patient-derived tumor xenografts of lymphoproliferative disorders: Are they surrogates for the human disease? Current Opinion in Hematology, 24, 384-392. doi: 10.1097/MOH.0000000000000349.
Rosenthal, A., & Rimsza, L. (2018). Genomics of aggressive B-cell lymphoma. Hematology. American Society of Hematology. Education Program, 2018, 69-74. doi: 10.1182/asheducation-2018.1.69.
Shultz, L. D., Goodwin, N., Ishikawa, F., Hosur, V., Lyons, B. L., & Greiner, D. L. (2014). Subcapsular transplantation of tissue in the kidney. Cold Spring Harbor Protocols, 2014, 737-740. doi: 10.1101/pdb.prot078089.
Stripecke, R., Munz, C., Schuringa, J. J., Bissig, K. D., Soper, B., Meeham, T., … Shultz, L. (2020). Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 12, e8662. doi: 10.15252/emmm.201708662.
Townsend, E. C., Murakami, M. A., Christodoulou, A., Christie, A. L., Koster, J., DeSouza, T. A., … Weinstock, D. M. (2016). The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell, 29, 574-586. doi: 10.1016/j.ccell.2016.03.008.
Valdez, K. E., Fan, F., Smith, W., Allred, D. C., Medina, D., & Behbod, F. (2011). Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. Journal of Pathology, 225, 565-573. doi: 10.1002/path.2969.
van Dongen, J. J. M., Langerak, A. W., Brüggemann, M., Evans, P. A. S., Hummel, M., Lavender, F. L., … Macintyre, E. A. (2003). Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia, 17(12), 2257-2317. doi: 10.1038/sj.leu.2403202.
Walrath, J. C., Hawes, J. J., Van Dyke, T., & Reilly, K. M. (2010). Genetically engineered mouse models in cancer research. Advances in Cancer Research, 106, 113-164. doi: 10.1016/S0065-230X(10)06004-5.
Wang, M., Zhang, L., Han, X., Yang, J., Qian, J., Hong, S., … Yi, Q. (2008). A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma. Clinical Cancer Research, 14, 2154-2160. doi: 10.1158/1078-0432.CCR-07-4409.
Warner, K., Crispatzu, G., Al-Ghaili, N., Weit, N., Florou, V., You, M. J., … Herling, M. (2013). Models for mature T-cell lymphomas-a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts. Critical Reviews in Oncology/Hematology, 88, 680-695. doi: 10.1016/j.critrevonc.2013.07.014.
Woo, X. Y., Giordano, J., Srivastava, A., Zhao, Z. M., Lloyd, M. W., de Bruijn, R., … Chuang, J. H. (2021). Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics, 53, 86-99. doi: 10.1038/s41588-020-00750-6.
Young, R. M., Phelan, J. D., Wilson, W. H., & Staudt, L. M. (2019). Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunological Reviews, 291, 190-213. doi: 10.1111/imr.12792.
Zhang, L., Nomie, K., Zhang, H., Bell, T., Pham, L., Kadri, S., … Wang, M. (2017). B-cell lymphoma patient-derived xenograft models enable drug discovery and are a platform for personalized therapy. Clinical Cancer Research, 23, 4212-4223. doi: 10.1158/1078-0432.CCR-16-2703.