BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset.
COVID-19 severity assessment
Chest X-rays
Convolutional neural networks
End-to-end learning
Semi-quantitative rating
Journal
Medical image analysis
ISSN: 1361-8423
Titre abrégé: Med Image Anal
Pays: Netherlands
ID NLM: 9713490
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
06
08
2020
revised:
04
02
2021
accepted:
17
03
2021
pubmed:
17
4
2021
medline:
24
6
2021
entrez:
16
4
2021
Statut:
ppublish
Résumé
In this work we design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients. Such semi-quantitative scoring system, namely Brixia score, is applied in serial monitoring of such patients, showing significant prognostic value, in one of the hospitals that experienced one of the highest pandemic peaks in Italy. To solve such a challenging visual task, we adopt a weakly supervised learning strategy structured to handle different tasks (segmentation, spatial alignment, and score estimation) trained with a "from-the-part-to-the-whole" procedure involving different datasets. In particular, we exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital. Our BS-Net demonstrates self-attentive behavior and a high degree of accuracy in all processing stages. Through inter-rater agreement tests and a gold standard comparison, we show that our solution outperforms single human annotators in rating accuracy and consistency, thus supporting the possibility of using this tool in contexts of computer-assisted monitoring. Highly resolved (super-pixel level) explainability maps are also generated, with an original technique, to visually help the understanding of the network activity on the lung areas. We also consider other scores proposed in literature and provide a comparison with a recently proposed non-specific approach. We eventually test the performance robustness of our model on an assorted public COVID-19 dataset, for which we also provide Brixia score annotations, observing good direct generalization and fine-tuning capabilities that highlight the portability of BS-Net in other clinical settings. The CXR dataset along with the source code and the trained model are publicly released for research purposes.
Identifiants
pubmed: 33862337
pii: S1361-8415(21)00092-X
doi: 10.1016/j.media.2021.102046
pmc: PMC8010334
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
102046Informations de copyright
Copyright © 2021. Published by Elsevier B.V.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
IEEE J Biomed Health Inform. 2021 Jun;25(6):1892-1903
pubmed: 33769939
Cureus. 2020 Jul 28;12(7):e9448
pubmed: 32864270
IEEE Access. 2020;8:115041-115050
pubmed: 32742893
IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700
pubmed: 32396075
Med Image Anal. 2006 Feb;10(1):19-40
pubmed: 15919232
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11
pubmed: 32613207
IEEE Rev Biomed Eng. 2021;14:4-15
pubmed: 32305937
Med Image Anal. 2020 May;62:101688
pubmed: 32272345
Inf Fusion. 2021 Dec;76:1-7
pubmed: 33967656
Diagn Interv Radiol. 2021 Jan;27(1):20-27
pubmed: 32815519
Radiol Artif Intell. 2020 May 27;2(3):e190043
pubmed: 32510054
Radiology. 2020 Oct;297(1):E197-E206
pubmed: 32407255
Comput Methods Programs Biomed. 2020 Oct;194:105532
pubmed: 32446037
IEEE Trans Med Imaging. 2014 Feb;33(2):577-90
pubmed: 24239990
Med Image Anal. 2014 Apr;18(3):591-604
pubmed: 24637156
Radiology. 2020 Jul;296(1):172-180
pubmed: 32255413
Radiology. 2020 Aug;296(2):E72-E78
pubmed: 32216717
PLoS One. 2020 Jul 28;15(7):e0236621
pubmed: 32722697
Radiology. 2021 Jan;298(1):E18-E28
pubmed: 32729810
Radiol Artif Intell. 2020 May 06;2(3):e200053
pubmed: 33928254
Radiol Med. 2020 May;125(5):509-513
pubmed: 32358689
Nat Med. 2020 Apr;26(4):459-461
pubmed: 32284618
AJR Am J Roentgenol. 2000 Jan;174(1):71-4
pubmed: 10628457
Radiol Med. 2020 May;125(5):461-464
pubmed: 32358691
Int J Comput Assist Radiol Surg. 2019 Apr;14(4):563-576
pubmed: 30730032
Thorax. 2018 Sep;73(9):840-846
pubmed: 29903755
Medicine (Baltimore). 2022 Jul 22;101(29):e29587
pubmed: 35866818
Sci Rep. 2020 Nov 11;10(1):19549
pubmed: 33177550
Lancet Digit Health. 2020 May;2(5):e225
pubmed: 32373786
Med Image Anal. 2020 Oct;65:101759
pubmed: 32623277
Radiol Cardiothorac Imaging. 2020 Jun 01;2(3):e200210
pubmed: 33778588
Eur Radiol Exp. 2021 Feb 2;5(1):7
pubmed: 33527198
Radiol Cardiothorac Imaging. 2020 Mar 30;2(2):e200075
pubmed: 33778562
Int J Environ Res Public Health. 2020 Sep 22;17(18):
pubmed: 32971995
Med Image Anal. 2020 Jul;63:101693
pubmed: 32289663
Radiol Artif Intell. 2020 Jul 22;2(4):e200079
pubmed: 33928256
Sci Rep. 2021 Apr 29;11(1):9315
pubmed: 33927239
Quant Imaging Med Surg. 2014 Dec;4(6):475-7
pubmed: 25525580
Eur Radiol. 2021 Jun;31(6):4016-4022
pubmed: 33263159
Radiology. 2020 Sep;296(3):E193-E194
pubmed: 32407257
Radiology. 2021 Mar;298(3):E162-E164
pubmed: 33350895
Int J Infect Dis. 2020 Jul;96:291-293
pubmed: 32437939
Med Image Anal. 2020 Oct;65:101794
pubmed: 32781377