A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells.
Conjunctiva
Cornea
Embryonic and fetal eye
Keratoconus
LSCs dysplasia
Limbal epithelial cells (LECs)
Limbal epithelial expansion
Limbal progenitor cells (LPCs)
Limbal stem cells (LSCs)
Ocular surface
Single cell ATAC-Seq
Single cell RNA-Seq
Journal
The ocular surface
ISSN: 1937-5913
Titre abrégé: Ocul Surf
Pays: United States
ID NLM: 101156063
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
15
12
2020
revised:
05
03
2021
accepted:
25
03
2021
pubmed:
19
4
2021
medline:
29
9
2021
entrez:
18
4
2021
Statut:
ppublish
Résumé
Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.
Identifiants
pubmed: 33865984
pii: S1542-0124(21)00021-5
doi: 10.1016/j.jtos.2021.03.010
pmc: PMC8343164
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
279-298Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0900879
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R006237/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S035826/1
Pays : United Kingdom
Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Références
J Proteomics. 2013 Jul 11;87:122-31
pubmed: 23727491
Stem Cell Res Ther. 2013 Jun 24;4(3):75
pubmed: 23800436
Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):27
pubmed: 32790859
Mol Endocrinol. 2006 Feb;20(2):414-25
pubmed: 16210345
Mitochondrion. 2017 Sep;36:103-113
pubmed: 28549842
J Cell Biol. 2007 Jun 18;177(6):1037-49
pubmed: 17562792
Stem Cells. 2019 Jan;37(1):139-149
pubmed: 30599086
Stem Cells Dev. 2012 Dec 10;21(18):3341-50
pubmed: 22873171
Mol Vis. 2011;17:2263-71
pubmed: 21897749
J Cell Physiol. 2013 May;228(5):1025-30
pubmed: 23042632
Bioessays. 2013 Mar;35(3):211-9
pubmed: 23129317
Cell. 1989 Apr 21;57(2):201-9
pubmed: 2702690
Stem Cells. 2007 May;25(5):1145-55
pubmed: 17255521
Prog Mol Biol Transl Sci. 2015;134:43-59
pubmed: 26310148
BMC Biol. 2017 May 19;15(1):45
pubmed: 28526034
Clin Ophthalmol. 2014 Mar 19;8:571-9
pubmed: 24672223
Stem Cells. 2018 Sep;36(9):1411-1420
pubmed: 29781179
Stem Cells Transl Med. 2019 Jan;8(1):46-57
pubmed: 30302939
Trans Am Ophthalmol Soc. 1988;86:178-207
pubmed: 2979018
Indian J Ophthalmol. 2012 Sep-Oct;60(5):423-7
pubmed: 22944753
Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1147-E1156
pubmed: 29351990
Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7282-8
pubmed: 21666241
J Cell Biochem. 2011 Apr;112(4):993-1002
pubmed: 21308743
Nat Genet. 2017 Oct;49(10):1428-1436
pubmed: 28869592
Exp Eye Res. 2005 Sep;81(3):247-64
pubmed: 16051216
Cell. 2010 Oct 1;143(1):134-44
pubmed: 20887898
Sci Rep. 2019 Jul 5;9(1):9763
pubmed: 31278274
Am J Pathol. 2007 Sep;171(3):838-45
pubmed: 17675580
Stem Cell Res. 2010 Nov;5(3):188-200
pubmed: 20813601
Stem Cells. 2012 Jun;30(6):1059-63
pubmed: 22489057
Biochem Biophys Res Commun. 1982 Aug;107(3):929-36
pubmed: 6291521
Invest Ophthalmol Vis Sci. 2005 Jun;46(6):1957-65
pubmed: 15914609
Exp Eye Res. 2016 Nov;152:113-122
pubmed: 27693410
Int J Med Sci. 2020 Feb 10;17(4):549-557
pubmed: 32174786
BMC Ophthalmol. 2016 Jul 16;16:109
pubmed: 27422394
Results Probl Cell Differ. 2012;55:357-94
pubmed: 22918816
Exp Eye Res. 1994 Dec;59(6):665-78
pubmed: 7698260
OMICS. 2019 Nov;23(11):583-597
pubmed: 31651220
Histol Histopathol. 2011 Mar;26(3):323-31
pubmed: 21210345
Invest Ophthalmol Vis Sci. 1998 Apr;39(5):710-7
pubmed: 9538877
J Clin Invest. 2017 Jun 1;127(6):2378-2391
pubmed: 28481227
Int J Mol Sci. 2013 Sep 23;14(9):19294-308
pubmed: 24065107
Invest Ophthalmol Vis Sci. 2015 Feb 19;56(2):1228-37
pubmed: 25698769
Proc Natl Acad Sci U S A. 1987 Apr;84(8):2302-6
pubmed: 2436229
Development. 2015 Sep 15;142(18):3073-6
pubmed: 26395135
Bull World Health Organ. 2001;79(3):214-21
pubmed: 11285665
BMC Genomics. 2013 Dec 17;14:900
pubmed: 24344983
Nature. 2007 Mar 8;446(7132):185-9
pubmed: 17330052
Exp Eye Res. 2001 May;72(5):511-7
pubmed: 11311043
PLoS One. 2010 Oct 06;5(10):e13192
pubmed: 20949137
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4200-8
pubmed: 16249499
Prog Mol Biol Transl Sci. 2015;134:25-41
pubmed: 26310147
Br J Ophthalmol. 2012 May;96(5):614-8
pubmed: 22133988
Invest Ophthalmol Vis Sci. 2004 Apr;45(4):1117-24
pubmed: 15037577
Invest Ophthalmol Vis Sci. 2019 Aug 1;60(10):3570-3583
pubmed: 31419300
Invest Ophthalmol Vis Sci. 2012 Feb 21;53(2):867-72
pubmed: 22232434
Stem Cells. 2009 Nov;27(11):2781-92
pubmed: 19711455
N Engl J Med. 2010 Jul 8;363(2):147-55
pubmed: 20573916
Biomed Res Int. 2017;2017:7803029
pubmed: 28251158
Ophthalmic Res. 1986;18(1):1-10
pubmed: 3513078
Invest Ophthalmol Vis Sci. 2014 Oct 16;55(11):7499-507
pubmed: 25324280
Glycoconj J. 2002 May-Jun;19(4-5):275-85
pubmed: 12975606
Invest Ophthalmol Vis Sci. 2010 Feb;51(2):765-74
pubmed: 19710417
Development. 2018 Feb 8;145(3):
pubmed: 29439135
Optom Vis Sci. 2015 Feb;92(2):e35-41
pubmed: 25397925
J Biol Chem. 1985 Apr 25;260(8):5139-46
pubmed: 3988748
Surv Ophthalmol. 2017 Nov - Dec;62(6):770-783
pubmed: 28688894
J Cell Sci. 1993 Sep;106 ( Pt 1):145-52
pubmed: 8270620
Mol Vis. 2007 Mar 01;13:337-44
pubmed: 17392684
Cell. 2019 Jun 13;177(7):1888-1902.e21
pubmed: 31178118
Cornea. 2000 Jul;19(4):526-33
pubmed: 10928772
Invest Ophthalmol Vis Sci. 2009 May;50(5):2103-8
pubmed: 19117933
PLoS One. 2015 Jan 23;10(1):e0117089
pubmed: 25615698
J Neurosci Res. 2021 Mar;99(3):731-749
pubmed: 33197966
Stem Cells. 2010 Mar 31;28(3):597-610
pubmed: 20014040
Invest Ophthalmol Vis Sci. 2006 Nov;47(11):4780-6
pubmed: 17065488
Stem Cells. 2014 Aug;32(8):2135-46
pubmed: 24590515
J Clin Med. 2019 Dec 02;8(12):
pubmed: 31810226
Invest Ophthalmol Vis Sci. 2006 Feb;47(2):545-51
pubmed: 16431949
Differentiation. 1987;34(1):60-7
pubmed: 2440750
Mol Vis. 2011;17:1652-61
pubmed: 21738394
Mol Vis. 2008 Jun 05;14:1041-9
pubmed: 18552977
Indian J Ophthalmol. 2018 Feb;66(2):190-194
pubmed: 29380756
Ocul Surf. 2021 Apr;20:20-32
pubmed: 33388438
Nat Protoc. 2020 Apr;15(4):1484-1506
pubmed: 32103204