Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders.
Brain
/ metabolism
DNA Copy Number Variations
/ genetics
Gene Expression Regulation
Genetic Association Studies
Genetic Predisposition to Disease
Genetic Variation
Heterogeneous-Nuclear Ribonucleoproteins
/ genetics
Humans
Inheritance Patterns
/ genetics
Mutation
/ genetics
Mutation, Missense
/ genetics
Neurodevelopmental Disorders
/ genetics
Phenotype
RNA Processing, Post-Transcriptional
/ genetics
Single-Cell Analysis
Cortex development
Gene families
Neurodevelopmental disorders
hnRNPs
Journal
Genome medicine
ISSN: 1756-994X
Titre abrégé: Genome Med
Pays: England
ID NLM: 101475844
Informations de publication
Date de publication:
19 04 2021
19 04 2021
Historique:
received:
04
09
2020
accepted:
16
03
2021
entrez:
20
4
2021
pubmed:
21
4
2021
medline:
19
1
2022
Statut:
epublish
Résumé
With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Sections du résumé
BACKGROUND
With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations.
METHODS
We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk.
RESULTS
We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs.
CONCLUSIONS
Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Identifiants
pubmed: 33874999
doi: 10.1186/s13073-021-00870-6
pii: 10.1186/s13073-021-00870-6
pmc: PMC8056596
doi:
Substances chimiques
Heterogeneous-Nuclear Ribonucleoproteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
63Subventions
Organisme : NIEHS NIH HHS
ID : P30 ES010126
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG000035
Pays : United States
Organisme : NINDS NIH HHS
ID : K08 NS092898
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R01 MH101221
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : Department of Health
Pays : United Kingdom
Investigateurs
John Acampado
(J)
Andrea J Ace
(AJ)
Alpha Amatya
(A)
Irina Astrovskaya
(I)
Asif Bashar
(A)
Elizabeth Brooks
(E)
Martin E Butler
(ME)
Lindsey A Cartner
(LA)
Wubin Chin
(W)
Wendy K Chung
(WK)
Amy M Daniels
(AM)
Pamela Feliciano
(P)
Chris Fleisch
(C)
Swami Ganesan
(S)
William Jensen
(W)
Alex E Lash
(AE)
Richard Marini
(R)
Vincent J Myers
(VJ)
Eirene O'Connor
(E)
Chris Rigby
(C)
Beverly E Robertson
(BE)
Neelay Shah
(N)
Swapnil Shah
(S)
Emily Singer
(E)
Lee Anne G Snyder
(LAG)
Alexandra N Stephens
(AN)
Jennifer Tjernagel
(J)
Brianna M Vernoia
(BM)
Natalia Volfovsky
(N)
Loran Casey White
(LC)
Alexander Hsieh
(A)
Yufeng Shen
(Y)
Xueya Zhou
(X)
Tychele N Turner
(TN)
Ethan Bahl
(E)
Taylor R Thomas
(TR)
Leo Brueggeman
(L)
Tanner Koomar
(T)
Jacob J Michaelson
(JJ)
Brian J O'Roak
(BJ)
Rebecca A Barnard
(RA)
Richard A Gibbs
(RA)
Donna Muzny
(D)
Aniko Sabo
(A)
Kelli L Baalman Ahmed
(KL)
Evan E Eichler
(EE)
Matthew Siegel
(M)
Leonard Abbeduto
(L)
David G Amaral
(DG)
Brittani A Hilscher
(BA)
Deana Li
(D)
Kaitlin Smith
(K)
Samantha Thompson
(S)
Charles Albright
(C)
Eric M Butter
(EM)
Sara Eldred
(S)
Nathan Hanna
(N)
Mark Jones
(M)
Daniel Lee Coury
(DL)
Jessica Scherr
(J)
Taylor Pifher
(T)
Erin Roby
(E)
Brandy Dennis
(B)
Lorrin Higgins
(L)
Melissa Brown
(M)
Michael Alessandri
(M)
Anibal Gutierrez
(A)
Melissa N Hale
(MN)
Lynette M Herbert
(LM)
Hoa Lam Schneider
(HL)
Giancarla David
(G)
Robert D Annett
(RD)
Dustin E Sarver
(DE)
Ivette Arriaga
(I)
Alexies Camba
(A)
Amanda C Gulsrud
(AC)
Monica Haley
(M)
James T McCracken
(JT)
Sophia Sandhu
(S)
Maira Tafolla
(M)
Wha S Yang
(WS)
Laura A Carpenter
(LA)
Catherine C Bradley
(CC)
Frampton Gwynette
(F)
Patricia Manning
(P)
Rebecca Shaffer
(R)
Carrie Thomas
(C)
Raphael A Bernier
(RA)
Emily A Fox
(EA)
Jennifer A Gerdts
(JA)
Micah Pepper
(M)
Theodore Ho
(T)
Daniel Cho
(D)
Joseph Piven
(J)
Holly Lechniak
(H)
Latha V Soorya
(LV)
Rachel Gordon
(R)
Allison Wainer
(A)
Lisa Yeh
(L)
Cesar Ochoa-Lubinoff
(C)
Nicole Russo
(N)
Elizabeth Berry-Kravis
(E)
Stephanie Booker
(S)
Craig A Erickson
(CA)
Lisa M Prock
(LM)
Katherine G Pawlowski
(KG)
Emily T Matthews
(ET)
Stephanie J Brewster
(SJ)
Margaret A Hojlo
(MA)
Evi Abada
(E)
Elena Lamarche
(E)
Tianyun Wang
(T)
Shwetha C Murali
(SC)
William T Harvey
(WT)
Hannah E Kaplan
(HE)
Karen L Pierce
(KL)
Lindsey DeMarco
(L)
Susannah Horner
(S)
Juhi Pandey
(J)
Samantha Plate
(S)
Mustafa Sahin
(M)
Katherine D Riley
(KD)
Erin Carmody
(E)
Julia Constantini
(J)
Amy Esler
(A)
Ali Fatemi
(A)
Hanna Hutter
(H)
Rebecca J Landa
(RJ)
Alexander P McKenzie
(AP)
Jason Neely
(J)
Vini Singh
(V)
Bonnie Van Metre
(B)
Ericka L Wodka
(EL)
Eric J Fombonne
(EJ)
Lark Y Huang-Storms
(LY)
Lillian D Pacheco
(LD)
Sarah A Mastel
(SA)
Leigh A Coppola
(LA)
Sunday Francis
(S)
Andrea Jarrett
(A)
Suma Jacob
(S)
Natasha Lillie
(N)
Jaclyn Gunderson
(J)
Dalia Istephanous
(D)
Laura Simon
(L)
Ori Wasserberg
(O)
Angela L Rachubinski
(AL)
Cordelia R Rosenberg
(CR)
Stephen M Kanne
(SM)
Amanda D Shocklee
(AD)
Nicole Takahashi
(N)
Shelby L Bridwell
(SL)
Rebecca L Klimczac
(RL)
Melissa A Mahurin
(MA)
Hannah E Cotrell
(HE)
Cortaiga A Grant
(CA)
Samantha G Hunter
(SG)
Christa Lese Martin
(CL)
Cora M Taylor
(CM)
Lauren K Walsh
(LK)
Katherine A Dent
(KA)
Andrew Mason
(A)
Anthony Sziklay
(A)
Christopher J Smith
(CJ)
Références
Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Lake AM, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat Genet. 2019;51(1):106–16.
pubmed: 30559488
Khalil B, Morderer D, Price PL, Liu F, Rossoll W. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res. 2018;1693(Pt A):75–91.
pubmed: 29462608
pmcid: 5997521
Purice MD, Taylor JP. Linking hnRNP function to ALS and FTD pathology. Front Neurosci. 2018;12
Fu X-D, Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15(10):689–701.
pubmed: 25112293
pmcid: 4440546
Dickerson JE, Robertson DL. On the origins of Mendelian disease genes in man: the impact of gene duplication. Mol Biol Evol. 2012;29(1):61–9.
pubmed: 21705381
Chen W-H, Zhao X-M, van Noort V, Bork P. Human monogenic disease genes have frequently functionally redundant paralogs. PLoS Comput Biol. 2013;16:9(5).
Lal D, May P, Perez-Palma E, Samocha KE, Kosmicki JA, Robinson EB, et al. Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. Genome Med. 2020;12(1):1–12.
Kim HJ, Kim NC, Wang Y-D, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467–73.
pubmed: 23455423
pmcid: 3756911
Le Ber I, Van Bortel I, Nicolas G, Bouya-Ahmed K, Camuzat A, Wallon D, et al. hnRNPA2B1 and hnRNPA1 mutations are rare in patients with “multisystem proteinopathy” and frontotemporal lobar degeneration phenotypes. Neurobiol Aging. 2014;35(4):934.e5–934.e6.
Bhoj E, Halbach S, McDonald-McGinn D, Tan C, Lande R, Waggoner D, et al. Expanding the spectrum of microdeletion 4q21 syndrome: a partial phenotype with incomplete deletion of the minimal critical region and a new association with cleft palate and Pierre Robin sequence. Am J Med Genet A. 2013;161(9):2327–33.
Reichert SC, Li R, Turner SA, van Jaarsveld RH, Massink MPG, van den Boogaard M-JH, et al. HNRNPH1-related syndromic intellectual disability: seven additional cases suggestive of a distinct syndromic neurodevelopmental syndrome. Clin Genet. 2020;98(1):91–8.
pubmed: 32335897
Bain JM, Cho MT, Telegrafi A, Wilson A, Brooks S, Botti C, et al. Variants in HNRNPH2 on the X chromosome are associated with a neurodevelopmental disorder in females. Am J Hum Genet. 2016;99(3):728–34.
pubmed: 27545675
pmcid: 5011042
Au PYB, Goedhart C, Ferguson M, Breckpot J, Devriendt K, Wierenga K, et al. Phenotypic spectrum of Au-Kline syndrome: a report of six new cases and review of the literature. Eur J Hum Genet EJHG. 2018;26(9):1272–81.
pubmed: 29904177
Okamoto N. Okamoto syndrome has features overlapping with Au-Kline syndrome and is caused by HNRNPK mutation. Am J Med Genet A. 2019;179(5):822–6.
pubmed: 30793470
Dentici ML, Barresi S, Niceta M, Pantaleoni F, Pizzi S, Dallapiccola B, et al. Clinical spectrum of Kabuki-like syndrome caused by HNRNPK haploinsufficiency. Clin Genet. 2018;93(2):401–7.
pubmed: 28374925
Lange L, Pagnamenta AT, Lise S, Clasper S, Stewart H, Akha ES, et al. A de novo frameshift in HNRNPK causing a Kabuki-like syndrome with nodular heterotopia. Clin Genet. 2016;90(3):258–62.
pubmed: 26954065
pmcid: 5006848
Miyake N, Inaba M, Mizuno S, Shiina M, Imagawa E, Miyatake S, Nakashima M, Mizuguchi T, Takata A, Ogata K, Matsumoto N A case of atypical kabuki syndrome arising from a novel missense variant in HNRNPK. Clin Genet. 2017;92(5):554–5.
Duijkers FA, McDonald A, Janssens GE, Lezzerini M, Jongejan A, van Koningsbruggen S, et al. HNRNPR variants that impair Homeobox gene expression drive developmental disorders in humans. Am J Hum Genet. 2019;104(6):1040–59.
pubmed: 31079900
pmcid: 6556882
Engwerda A, Frentz B, den Ouden AL, Flapper BCT, Swertz MA, Gerkes EH, et al. The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports. Eur J Hum Genet. 2018;26(10):1478–89.
pubmed: 29904178
pmcid: 6138703
Depienne C, Nava C, Keren B, Heide S, Rastetter A, Passemard S, et al. Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU. Hum Genet. 2017;136(4):463–79.
pubmed: 28283832
pmcid: 5360844
Yates TM, Vasudevan PC, Chandler KE, Donnelly DE, Stark Z, Sadedin S, Willoughby J, Broad Center for Mendelian Genomics, DDD study, Balasubramanian M. De novo mutations in HNRNPU result in a neurodevelopmental syndrome. Am J Med Genet A. 2017;173(11):3003–12.
Bramswig NC, Lüdecke H-J, Hamdan FF, Altmüller J, Beleggia F, Elcioglu NH, et al. Heterozygous HNRNPU variants cause early onset epilepsy and severe intellectual disability. Hum Genet. 2017;136(7):821–34.
pubmed: 28393272
Leduc MS, Chao H-T, Qu C, Walkiewicz M, Xiao R, Magoulas P, et al. Clinical and molecular characterization of de novo loss of function variants in HNRNPU. Am J Med Genet A. 2017;173(10):2680–9.
pubmed: 28815871
Turner TN, Yi Q, Krumm N, Huddleston J, Hoekzema K, F Stessman HA, et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 2017;45(D1):D804–11.
Harmsen S, Buchert R, Mayatepek E, Haack TB, Distelmaier F. Bain type of X-linked syndromic mental retardation in boys. Clin Genet. 2019;95(6):734–5.
pubmed: 30887513
Jepsen WM, Ramsey K, Szelinger S, Llaci L, Balak C, Belnap N, Bilagody C, de Both M, Gupta R, Naymik M, Pandey R, Piras IS, Sanchez-Castillo M, Rangasamy S, Narayanan V, Huentelman MJ. Two additional males with X-linked, syndromic mental retardation carry de novo mutations in HNRNPH2. Clin Genet. 2019;96(2):183–5.
Pilch J, Koppolu AA, Walczak A, Murcia Pienkowski VA, Biernacka A, Skiba P, et al. Evidence for HNRNPH1 being another gene for Bain type syndromic mental retardation. Clin Genet. 2018;94(3–4):381–5.
pubmed: 29938792
Somashekar PH, Narayanan DL, Jagadeesh S, Suresh B, Vaishnavi RD, Bielas S, et al. Bain type of X-linked syndromic mental retardation in a male with a pathogenic variant in HNRNPH2. Am J Med Genet A. 2020;182(1):183–8.
pubmed: 31670473
denovo-db. Available from: http://denovo-db.gs.washington.edu
Durkin A, Albaba S, Fry AE, Morton JE, Douglas A, Beleza A, Williams D, Volker-Touw CML, Lynch SA, Canham N, Clowes V, Straub V, Lachlan K, Gibbon F, el Gamal M, Varghese V, Parker MJ, Newbury-Ecob R, Turnpenny PD, Gardham A, Ghali N, Balasubramanian M. Clinical findings of 21 previously unreported probands with HNRNPU-related syndrome and comprehensive literature review. Am J Med Genet A. 2020;182(7):1637–54.
Caliebe A, Kroes HY, van der Smagt JJ, Martin-Subero JI, Tönnies H, Van ‘t Slot R, et al. Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440 Mb deletion in region 1q44 containing the HNRPU gene. Eur J Med Genet. 2010;53(4):179–85.
de Kovel CGF, Brilstra EH, van Kempen MJA, Van’t Slot R, Nijman IJ, Afawi Z, et al. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients. Mol Genet Genomic Med. 2016;4(5):568–80.
pubmed: 27652284
pmcid: 5023942
Demos M, Guella I, DeGuzman C, McKenzie MB, Buerki SE, Evans DM, et al. Diagnostic yield and treatment impact of targeted exome sequencing in early-onset epilepsy. Front Neurol. 2019;10:434.
Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, Kvarnung M, Gerdts J, Trinh S, Cosemans N, Vives L, Lin J, Turner TN, Santen G, Ruivenkamp C, Kriek M, van Haeringen A, Aten E, Friend K, Liebelt J, Barnett C, Haan E, Shaw M, Gecz J, Anderlid BM, Nordgren A, Lindstrand A, Schwartz C, Kooy RF, Vandeweyer G, Helsmoortel C, Romano C, Alberti A, Vinci M, Avola E, Giusto S, Courchesne E, Pramparo T, Pierce K, Nalabolu S, Amaral DG, Scheffer IE, Delatycki MB, Lockhart PJ, Hormozdiari F, Harich B, Castells-Nobau A, Xia K, Peeters H, Nordenskjöld M, Schenck A, Bernier RA, Eichler EE. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49(4):515–26.
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.
Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 2017;20(4):602–611.
Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, Raja A, Coe BP, Stessman HA, He ZX, Leal SM, Bernier R, Eichler EE. Excess of rare, inherited truncating mutations in autism. Nat Genet. 2015;47(6):582–8.
Lelieveld SH, Reijnders MRF, Pfundt R, Yntema HG, Kamsteeg E-J, de Vries P, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19(9):1194–6.
pubmed: 27479843
Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21.
Hinokuma N, Nakashima M, Asai H, Nakamura K, Akaboshi S, Fukuoka M, et al. Clinical and genetic characteristics of patients with Doose syndrome. Epilepsia Open.
Helbig KL, Farwell Hagman KD, Shinde DN, Mroske C, Powis Z, Li S, et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med Off J Am Coll Med Genet. 2016;18(9):898–905.
Feliciano P, Zhou X, Astrovskaya I, Turner TN, Wang T, Brueggeman L, et al. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genomic Med. 2019;4(1):19.
Yamada M, Shiraishi Y, Uehara T, Suzuki H, Takenouchi T, Abe-Hatano C, et al. Diagnostic utility of integrated analysis of exome and transcriptome: successful diagnosis of Au-Kline syndrome in a patient with submucous cleft palate, scaphocephaly, and intellectual disabilities. Mol Genet Genomic Med. 2020;8(9):e1364.
pubmed: 32588992
pmcid: 7503209
Peron A, Novara F, Briola FL, Merati E, Giannusa E, Segalini E, et al. Missense variants in the Arg206 residue of HNRNPH2: further evidence of causality and expansion of the phenotype. Am J Med Genet A. 2020;182(4):823–8.
pubmed: 31943778
Borlot F, de Almeida BI, Combe SL, Andrade DM, Filloux FM, Myers KA. Clinical utility of multigene panel testing in adults with epilepsy and intellectual disability. Epilepsia. 2019;60(8):1661–9.
Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825–30.
pubmed: 23708187
pmcid: 3704157
Chérot E, Keren B, Dubourg C, Carré W, Fradin M, Lavillaureix A, et al. Using medical exome sequencing to identify the causes of neurodevelopmental disorders: experience of 2 clinical units and 216 patients. Clin Genet. 2018;93(3):567–76.
pubmed: 28708303
Coppola A, Cellini E, Stamberger H, Saarentaus E, Cetica V, Lal D, et al. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia. 2019;60(4):689–706.
pubmed: 30866059
pmcid: 6488157
The Epilepsy Genetics Initiative. Systematic reanalysis of diagnostic exomes increases yield. Epilepsia. 2019;60(5):797–806.
Hamdan FF, Srour M, Capo-Chichi J-M, Daoud H, Nassif C, Patry L, et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014;10(10):e1004772.
pubmed: 25356899
pmcid: 4214635
Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G, et al. Utility of genetic testing for therapeutic decision-making in adults with epilepsy. Epilepsia. 2020;61(6):1234–9.
pubmed: 32427350
Mignot C, von Stülpnagel C, Nava C, Ville D, Sanlaville D, Lesca G, et al. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J Med Genet. 2016;53(8):511–22.
pubmed: 26989088
Monroe GR, Frederix GW, Savelberg SMC, de Vries TI, Duran KJ, van der Smagt JJ, et al. Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. Genet Med Off J Am Coll Med Genet. 2016;18(9):949–56.
Oates S, Tang S, Rosch R, Lear R, Hughes EF, Williams RE, et al. Incorporating epilepsy genetics into clinical practice: a 360°evaluation. Npj Genomic Med. 2018;3(1):1–11.
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94(5):677–94.
pubmed: 24768552
pmcid: 4067558
Stamouli S, Anderlid B-M, Willfors C, Thiruvahindrapuram B, Wei J, Berggren S, et al. Copy number variation analysis of 100 twin pairs enriched for neurodevelopmental disorders. Twin Res Hum Genet. 2018;21(1):1–11.
pubmed: 29307321
Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu Y-F, McSweeney KM, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med Off J Am Coll Med Genet. 2015;17(10):774–81.
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–8.
Maystadt I, Deprez M, Moortgat S, Benoît V, Karadurmus D. A second case of Okamoto syndrome caused by HNRNPK mutation. Am J Med Genet A. 2020;182(6):1537–9.
pubmed: 32222014
Shimada S, Oguni H, Otani Y, Nishikawa A, Ito S, Eto K, Nakazawa T, Yamamoto-Shimojima K, Takanashi JI, Nagata S, Yamamoto T. An episode of acute encephalopathy with biphasic seizures and late reduced diffusion followed by hemiplegia and intractable epilepsy observed in a patient with a novel frameshift mutation in HNRNPU. Brain Dev. 2018;40(9):813–8.
Wang T, Hoekzema K, Vecchio D, Wu H, Sulovari A, Coe BP, et al. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun. 2020;11(1):4932.
pubmed: 33004838
pmcid: 7530681
Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586(7831):757–62.
pubmed: 33057194
pmcid: 7116826
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–84. e23
pubmed: 31981491
pmcid: 7250485
Iourov IY, Zelenova MA, Vorsanova SG, Voinova VV, Yurov YB. 4q21.2q21.3 duplication: molecular and neuropsychological aspects. Curr Genomics. 2018;19(3):173–8.
pubmed: 29606904
pmcid: 5850505
Lebedev IN, Nazarenko LP, Skryabin NA, Babushkina NP, Kashevarova AA. A de novo microtriplication at 4q21.21-q21.22 in a patient with a vascular malignant hemangioma, elongated sigmoid colon, developmental delay, and absence of speech. Am J Med Genet A. 2016;170(8):2089–96.
pubmed: 27288323
Zarrei M, Merico D, Kellam B, Engchuan W, Scriver T, Jokhan R, Wilson MD, Parr J, Lemire EG, Stavropoulos DJ, Scherer SW. A de novo deletion in a boy with cerebral palsy suggests a refined critical region for the 4q21.22 microdeletion syndrome. Am J Med Genet A. 2017;173(5):1287–93.
Mohamed AM, El-Bassyouni HT, El-Gerzawy AM, Hammad SA, Helmy NA, Kamel AK, et al. Cytogenomic characterization of 1q43q44 deletion associated with 4q32.1q35.2 duplication and phenotype correlation. Mol Cytogenet. 2018;11:57.
pubmed: 30410579
pmcid: 6219057
Stessman HA, Bernier R, Eichler EE. A genotype-first approach to defining the subtypes of a complex disease. Cell. 2014;156(5):872–7.
pubmed: 24581488
pmcid: 4076166
Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9.
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. ArXiv:12073907 [q-bio.GN] 2012. https://arxiv.org/abs/1207.3907 .
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
pubmed: 20644199
pmcid: 20644199
Danecek P, McCarthy SA. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics. 2017;33(13):2037–9.
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–30.
pubmed: 26220891
pmcid: 4833888
NHGRI/NHLBI University of Washington-Center for Mendelian Genomics (UW-CMG), Seattle, WA. MyGene2. Available from: http://www.mygene2.org
Abramovs N, Brass A, Tassabehji M. GeVIR is a continuous gene-level metric that uses variant distribution patterns to prioritize disease candidate genes. Nat Genet. 2020;52(1):35–9.
O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.
pubmed: 22495309
pmcid: 3350576
Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944–50.
Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40(8):1030–8.
Meyer MJ, Beltrán JF, Liang S, Fragoza R, Rumack A, Liang J, et al. Interactome INSIDER: a structural interactome browser for genomic studies. Nat Methods. 2018;15(2):107–14.
pubmed: 29355848
pmcid: 6026581
Turner TN, Douville C, Kim D, Stenson PD, Cooper DN, Chakravarti A, Karchin R. Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns. Hum Mol Genet. 2015;24(21):5995–6002.
Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, Gambin T, et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet. 2018;103(2):171–87.
pubmed: 30032986
pmcid: 6081281
Shamsani J, Kazakoff SH, Armean IM, McLaren W, Parsons MT, Thompson BA, O’Mara TA, Hunt SE, Waddell N, Spurdle AB. A plugin for the Ensembl variant effect predictor that uses MaxEntScan to predict variant spliceogenicity. Bioinformatics. 2019;35(13):2315–7.
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135(8):851–67.
Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science. 2017;358(6368):1318–23.
pubmed: 29217575
pmcid: 5991609
CSEA tool. Available from: http://genetics.wustl.edu/jdlab/csea-tool-2/
Babbi G, Martelli PL, Casadio R. PhenPath: a tool for characterizing biological functions underlying different phenotypes. BMC Genomics. 2019;20(8):548.
pubmed: 31307376
pmcid: 6631446
gnomAD. Available from: https://gnomad.broadinstitute.org/
Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY, et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012;1(2):167–78.
pubmed: 22574288
pmcid: 3345519
Cooper-Knock J, Higginbottom A, Stopford MJ, Highley JR, Ince PG, Wharton SB, Pickering-Brown S, Kirby J, Hautbergue GM, Shaw PJ. Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol (Berl). 2015;130(1):63–75.
Mohagheghi F, Prudencio M, Stuani C, Cook C, Jansen-West K, Dickson DW, Petrucelli L, Buratti E. TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Hum Mol Genet. 2016;25(3):534–45.
Kashima T, Rao N, David CJ, Manley JL. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum Mol Genet. 2007;16(24):3149–59.
pubmed: 17884807
Berson A, Barbash S, Shaltiel G, Goll Y, Hanin G, Greenberg DS, et al. Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med. 2012;4(8):730–42.
pubmed: 22628224
pmcid: 3494073
Borreca A, Gironi K, Amadoro G, Ammassari-Teule M. Opposite dysregulation of fragile-X mental retardation protein and heteronuclear ribonucleoprotein C protein associates with enhanced APP translation in Alzheimer disease. Mol Neurobiol. 2016;53(5):3227–34.
Sun Y, Chen H, Lu Y, Duo J, Lei L, OuYang Y, et al. Limb girdle muscular dystrophy D3 HNRNPDL related in a Chinese family with distal muscle weakness caused by a mutation in the prion-like domain. J Neurol. 2019;266(2):498–506.
pubmed: 30604053
Mori K, Lammich S, Mackenzie IRA, Forné I, Zilow S, Kretzschmar H, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol (Berl). 2013;125(3):413–23.
Lee EK, Kim HH, Kuwano Y, Abdelmohsen K, Srikantan S, Subaran SS, et al. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat Struct Mol Biol. 2010;17(6):732–9.
pubmed: 20473314
pmcid: 2908492
Moursy A, Allain FH-T, Cléry A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 2014;42(10):6659–72.
pubmed: 24692659
pmcid: 4041419
Barbash S, Garfinkel BP, Maoz R, Simchovitz A, Nadorp B, Guffanti A, et al. Alzheimer’s brains show inter-related changes in RNA and lipid metabolism. Neurobiol Dis. 2017;106:1–13.
pubmed: 28630030
pmcid: 5560656
Cho S, Moon H, Loh TJ, Oh HK, Cho S, Choy HE, et al. hnRNP M facilitates exon 7 inclusion of SMN2 pre-mRNA in spinal muscular atrophy by targeting an enhancer on exon 7. Biochim Biophys Acta. 2014;1839(4):306–15.
pubmed: 24533984
Waibel S, Neumann M, Rabe M, Meyer T, Ludolph AC. Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology. 2010;75(9):815–7.
pubmed: 20660363
Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11.
pubmed: 19251628
pmcid: 4516382
Chen H-H, Chang J-G, Lu R-M, Peng T-Y, Tarn W-Y. The RNA binding protein hnRNP Q modulates the utilization of exon 7 in the survival motor neuron 2 (SMN2) gene. Mol Cell Biol. 2008;28(22):6929–38.
pubmed: 18794368
pmcid: 2573304
Dombert B, Sivadasan R, Simon CM, Jablonka S, Sendtner M. Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PLoS One. 2014;9(10):e110846.
pubmed: 25338097
pmcid: 4206449
Guo H, Duyzend MH, Coe BP, Baker C, Hoekzema K, Gerdts J, et al. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet Med. 2019;21(7):1611–1620. A.
Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.
pubmed: 25363768
pmcid: 4313871
Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet Lond Engl. 2012;380(9854):1674–82.
Ernst C. Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci. 2016 [cited 2020 Feb 12];39(5):290–9.
Donovan APA, Basson MA. The neuroanatomy of autism – a developmental perspective. J Anat. 2017;230(1):4–15.
pubmed: 27620360
Guarnieri FC, de Chevigny A, Falace A, Cardoso C. Disorders of neurogenesis and cortical development. Dialogues Clin Neurosci. 2018;20(4):255–66.
pubmed: 30936766
pmcid: 6436956
Wang Y-C, Chang K-C, Lin B-W, Lee J-C, Lai C-H, Lin L-J, et al. The EGF/hnRNP Q1 axis is involved in tumorigenesis via the regulation of cell cycle-related genes. Exp Mol Med. 2018;50(6):70.
Chun Y, Kim R, Lee S. Centromere protein (CENP)-W interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) U and may contribute to kinetochore-microtubule attachment in mitotic cells. PLoS One. 2016;11(2):e0149127.
Douglas P, Ye R, Morrice N, Britton S, Trinkle-Mulcahy L, Lees-Miller SP. Phosphorylation of SAF-A/hnRNP-U serine 59 by Polo-like kinase 1 is required for mitosis. Mol Cell Biol. 2015;35(15):2699–713.
pubmed: 25986610
pmcid: 4524121
Sugimasa H, Taniue K, Kurimoto A, Takeda Y, Kawasaki Y, Akiyama T. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells. Biochem Biophys Res Commun. 2015;459(1):29–35.
pubmed: 25701787
Al-Khalaf HH, Colak D, Al-Saif M, Al-Bakheet A, Hendrayani S-F, Al-Yousef N, et al. p16INK4A positively regulates Cyclin D1 and E2F1 through negative control of AUF1. PLoS One. 2011;6(7):e21111.
pubmed: 21799732
pmcid: 3140473
Schuetze M, Park MTM, Cho IY, MacMaster FP, Chakravarty MM, Bray SL. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology. 2016;41(11):2627–37.
pubmed: 27125303
pmcid: 5026732
Peixoto RT, Chantranupong L, Hakim R, Levasseur J, Wang W, Merchant T, et al. Abnormal striatal development underlies the early onset of behavioral deficits in Shank3B−/− mice. Cell Rep. 2019;29(7):2016–27. e4
pubmed: 31722214
pmcid: 6889826
Schumann CM, Bauman MD, Amaral DG. Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders. Neuropsychologia. 2011;49(4):745–59.
Pérez-Palma E, May P, Iqbal S, Niestroj L-M, Du J, Heyne HO, et al. Identification of pathogenic variant enriched regions across genes and gene families. Genome Res. 2020;30(1):62–71.
Dusen CMV, Yee L, McNally LM, McNally MT. A glycine-rich domain of hnRNP H/F promotes nucleocytoplasmic shuttling and nuclear import through an interaction with transportin 1. Mol Cell Biol. 2010;30(10):2552–62.
pubmed: 20308327
pmcid: 2863714
Choi J-H, Kim S-H, Jeong Y-H, Kim SW, Min K-T, Kim K-T. hnRNP Q regulates internal ribosome entry site-mediated fmr1 translation in neurons. Mol Cell Biol. 2019;39(4):e00371–18.
Tratnjek L, Živin M, Glavan G. Synaptotagmin 7 and SYNCRIP proteins are ubiquitously expressed in the rat brain and co-localize in Purkinje neurons. J Chem Neuroanat. 2017;79:12–21.
pubmed: 27771350
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell. 2015;27(3):518–34.
McDermott SM, Yang L, Halstead JM, Hamilton RS, Meignin C, Davis I. Drosophila Syncrip modulates the expression of mRNAs encoding key synaptic proteins required for morphology at the neuromuscular junction. RNA N Y N. 2014;20(10):1593–606.
Chen H-H, Yu H-I, Chiang W-C, Lin Y-D, Shia B-C, Tarn W-Y. hnRNP Q regulates Cdc42-mediated neuronal morphogenesis. Mol Cell Biol. 2012;32(12):2224–38.
pubmed: 22493061
pmcid: 3372263
Duning K, Buck F, Barnekow A, Kremerskothen J. SYNCRIP, a component of dendritically localized mRNPs, binds to the translation regulator BC200 RNA. J Neurochem. 2008;105(2):351–9.
pubmed: 18045242
Schneider T, Ziòłkowska B, Gieryk A, Tyminska A, Przewłocki R. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology. 2007;193(4):547–55.
pubmed: 17497229
Dobi A, Szemes M, Lee C, Palkovits M, Lim F, Gyorgy A, et al. AUF1 is expressed in the developing brain, binds to AT-rich double-stranded DNA, and regulates enkephalin gene expression. J Biol Chem. 2006;281(39):28889–900.
pubmed: 16769718
Leirer DJ, Iyegbe CO, Di Forti M, Patel H, Carra E, Fraietta S, et al. Differential gene expression analysis in blood of first episode psychosis patients. Schizophr Res. 2019;209:88–97.
pubmed: 31113746
pmcid: 6677921
Servadio M, Manduca A, Melancia F, Leboffe L, Schiavi S, Campolongo P, Palmery M, Ascenzi P, di Masi A, Trezza V. Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2018;28(1):85–96.
Hong Z, Jiang J, Ma J, Dai S, Xu T, Li H, Yasui A. The role of hnRPUL1 involved in DNA damage response is related to PARP1. PLoS One. 2013;8(4):e60208.
Polo SE, Blackford AN, Chapman JR, Baskcomb L, Gravel S, Rusch A, Thomas A, Blundred R, Smith P, Kzhyshkowska J, Dobner T, Taylor AMR, Turnell AS, Stewart GS, Grand RJ, Jackson SP. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair. Mol Cell. 2012;45(4):505–16.
Markkanen E, Meyer U, Dianov GL. DNA damage and repair in schizophrenia and autism: implications for cancer comorbidity and beyond. Int J Mol Sci 2016;17(6).
Lampasona AA, Czaplinski K. Hnrnpab regulates neural cell motility through transcription of Eps8. RNA N Y N. 2019;25(1):45–59.
Sinnamon JR, Waddell CB, Nik S, Chen EI, Czaplinski K. Hnrpab regulates neural development and neuron cell survival after glutamate stimulation. RNA N Y N. 2012;18(4):704–19.
White R, Gonsior C, Bauer NM, Krämer-Albers E-M, Luhmann HJ, Trotter J. Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis. J Biol Chem. 2012;287(3):1742–54.
pubmed: 22128153
Chou M-Y, Rooke N, Turck CW, Black DL. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol. 1999;19(1):69–77.
pubmed: 9858532
pmcid: 83866
Latorre E, Torregrossa R, Wood ME, Whiteman M, Harries LW. Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging. 2018;10(7):1666–81.
pubmed: 30026406
pmcid: 6075431
GenBank Overview. Available from: https://www.ncbi.nlm.nih.gov/genbank/