Assessing and Improving Protein Sample Quality.
Batch-to-batch consistency
Homogeneity
Identity
Oligomeric state
Optimization of storage conditions
Protein stability
Purity
Structural integrity
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
20
4
2021
pubmed:
21
4
2021
medline:
23
6
2021
Statut:
ppublish
Résumé
One essential prerequisite of any experiment involving a purified protein, such as interaction studies or structural and biophysical characterization, is to work with a "good-quality" sample in order to ensure reproducibility and reliability of the data. Here, we define a "good-quality" sample as a protein preparation that fulfills three criteria: (1) the preparation contains a protein that is pure and soluble and exhibits structural and functional integrity, (2) the protein must be structurally homogeneous, and (3) the preparation must be reproducible. To ensure effective quality control (QC) of all these parameters, we suggest to follow a simple workflow involving the use of gel electrophoresis, light scattering, and spectroscopic experiments. We describe the techniques used in every step of this workflow and provide easy-to-use standard protocols for each step.
Identifiants
pubmed: 33877592
doi: 10.1007/978-1-0716-1197-5_1
doi:
Substances chimiques
Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3-46Références
Noble JE (2014) Quantification of protein concentration using UV absorbance and Coomassie dyes. Methods Enzymol 536:17–26. https://doi.org/10.1016/B978-0-12-420070-8.00002-7
doi: 10.1016/B978-0-12-420070-8.00002-7
pubmed: 24423263
Noble JE, Bailey MJA (2009) Chapter 8 Quantitation of protein. Methods Enzymol 463:73–95. https://doi.org/10.1016/S0076-6879(09)63008-1
doi: 10.1016/S0076-6879(09)63008-1
pubmed: 19892168
Raynal B, Lenormand P, Baron B, Hoos S, England P (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Factories 13:180. https://doi.org/10.1186/s12934-014-0180-6
doi: 10.1186/s12934-014-0180-6
Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423. https://doi.org/10.1002/pro.5560041120
doi: 10.1002/pro.5560041120
pubmed: 8563639
pmcid: 2143013
Glasel J (1995) Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. BioTechniques 18:62–63
pubmed: 7702855
Andrews AT (1986) Electrophoresis: theory, techniques and biochemical and clinical applications. Clarendon Press, Oxford
Rothe GM (1994) Electrophoresis of enzymes. In: Laboratory methods. Springer, Berlin
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0
doi: 10.1038/227680a0
pubmed: 5432063
Krause F (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781. https://doi.org/10.1002/elps.200600049
doi: 10.1002/elps.200600049
pubmed: 16817166
Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231. https://doi.org/10.1016/0003-2697(91)90094-a
doi: 10.1016/0003-2697(91)90094-a
pubmed: 1812789
Nobbmann U, Connah M, Fish B, Varley P, Gee C, Mulot S, Chen J, Zhou L, Lu Y, Shen F, Yi J, Harding SE (2007) Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol Genet Eng Rev 24:117–128. https://doi.org/10.1080/02648725.2007.10648095
doi: 10.1080/02648725.2007.10648095
pubmed: 18059629
Fekete S, Beck A, Veuthey J-L, Guillarme D (2014) Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 101:161–173. https://doi.org/10.1016/j.jpba.2014.04.011
doi: 10.1016/j.jpba.2014.04.011
pubmed: 24816223
Sahin E, Roberts CJ (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. In: Voynov V, Caravella JA (eds) Therapeutic proteins, vol 899. Springer Nature, Cham, pp 403–423
doi: 10.1007/978-1-61779-921-1_25
Heck AJR, Van Den Heuvel RHH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389. https://doi.org/10.1002/mas.10081
doi: 10.1002/mas.10081
pubmed: 15264235
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71. https://doi.org/10.1126/science.2675315
doi: 10.1126/science.2675315
pubmed: 2675315
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153. https://doi.org/10.1002/rcm.1290020802
doi: 10.1002/rcm.1290020802
Eakin CM, Miller A, Kerr J, Kung J, Wallace A (2014) Assessing analytical methods to monitor isoAsp formation in monoclonal antibodies. Front Pharmacol 5:87. https://doi.org/10.3389/fphar.2014.00087
doi: 10.3389/fphar.2014.00087
pubmed: 24808864
pmcid: 4010776
Daviter T, Chmel N, Rodger A (2013) Circular and linear dichroism spectroscopy for the study of protein-ligand interactions. In: Williams M, Daviter T (eds) Protein-ligand interactions: methods and applications. Humana Press, Totowa, NJ, pp 211–241
doi: 10.1007/978-1-62703-398-5_8
Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535. https://doi.org/10.1038/nprot.2006.204
doi: 10.1038/nprot.2006.204
pubmed: 17406506
pmcid: 2752288
Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890. https://doi.org/10.1038/nprot.2006.202
doi: 10.1038/nprot.2006.202
pubmed: 17406547
pmcid: 2728378
Greenfield NJ (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1:2733–2741. https://doi.org/10.1038/nprot.2006.229
doi: 10.1038/nprot.2006.229
pubmed: 17406529
pmcid: 2728349
Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Springer, Dordrecht
Zerbe O, Jurt S (2014) Applied NMR spectroscopy for chemists and life scientists. Wiley-VCH, Weinheim
Gräslund S et al (2008) Protein production and purification. Nat Methods 5:135–146. https://doi.org/10.1038/nmeth.f.202
doi: 10.1038/nmeth.f.202
pubmed: 18235434
Medrano G, Dolan MC, Condori J, Radin DN, Cramer CL (2012) Quality assessment of recombinant proteins produced in plants. In: Lorence A (ed) Recombinant gene expression. Humana Press, Totowa, NJ, pp 535–564
doi: 10.1007/978-1-61779-433-9_29
Dupeux F, Röwer M, Seroul G, Blot D, Márquez JA (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr D Biol Crystallogr 67:915–919. https://doi.org/10.1107/S0907444911036225
doi: 10.1107/S0907444911036225
pubmed: 22101817
Monsellier E, Bedouelle H (2005) Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng Des Sel 18:445–456. https://doi.org/10.1093/protein/gzi046
doi: 10.1093/protein/gzi046
pubmed: 16087653
Moon CP, Fleming KG (2011) Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes. Methods Enzymol 492:189–211. https://doi.org/10.1016/B978-0-12-381268-1.00018-5
doi: 10.1016/B978-0-12-381268-1.00018-5
pubmed: 21333792
pmcid: 3799943
Žoldák G, Jancura D, Sedlák E (2017) The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions. Protein Sci 26:1236–1239. https://doi.org/10.1002/pro.3170
doi: 10.1002/pro.3170
pubmed: 28370732
pmcid: 5441425
Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440. https://doi.org/10.1177/108705710100600609
doi: 10.1177/108705710100600609
pubmed: 11788061
Boivin S, Kozak S, Meijers R (2013) Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif 91:192–206. https://doi.org/10.1016/j.pep.2013.08.002
doi: 10.1016/j.pep.2013.08.002
pubmed: 23948764
Durowoju IB, Bhandal KS, Hu J, Carpick B, Kirkitadze M (2017) Differential scanning calorimetry - a method for assessing the thermal stability and conformation of protein antigen. J Vis Exp (121):e55262. https://doi.org/10.3791/55262
Quezada AG, Díaz-Salazar AJ, Cabrera N, Pérez-Montfort R, Piñeiro Á, Costas M (2017) Interplay between protein thermal flexibility and kinetic stability. Structure 25:167–179. https://doi.org/10.1016/j.str.2016.11.018
doi: 10.1016/j.str.2016.11.018
pubmed: 28052236
Lebendiker M, Danieli T (2014) Production of prone-to-aggregate proteins. FEBS Lett 588:236–246. https://doi.org/10.1016/j.febslet.2013.10.044
doi: 10.1016/j.febslet.2013.10.044
pubmed: 24211444
Jancarik J, Pufan R, Hong C, Kim SH, Kim R (2004) Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins. Acta Crystallogr D Biol Crystallogr 60:1670–1673. https://doi.org/10.1107/S0907444904010972
doi: 10.1107/S0907444904010972
pubmed: 15333951
Wang J, Matayoshi E (2012) Solubility at the molecular level: development of a critical aggregation concentration (CAC) assay for estimating compound monomer solubility. Pharm Res 29:1745–1754. https://doi.org/10.1007/s11095-012-0730-8
doi: 10.1007/s11095-012-0730-8
pubmed: 22422319
Le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. https://doi.org/10.1016/S0304-4157(00)00010-1
doi: 10.1016/S0304-4157(00)00010-1
Schuler MA, Denisov IG, Sligar SG (2013) Nanodiscs as a new tool to examine lipid–protein interactions. In: Kleinschmidt JH (ed) Lipid-protein interactions: methods and protocols. Humana Press, Totowa, NJ, pp 415–433
doi: 10.1007/978-1-62703-275-9_18
Stroud Z, Hall SCL, Dafforn TR (2018) Purification of membrane proteins free from conventional detergents: SMA, new polymers, new opportunities and new insights. Methods 147:106–117. https://doi.org/10.1016/j.ymeth.2018.03.011
doi: 10.1016/j.ymeth.2018.03.011
pubmed: 29608964
Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S (2017) Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew Chem Int Ed 56:1919–1924. https://doi.org/10.1002/anie.201610778
doi: 10.1002/anie.201610778
Hardy D, Bill RM, Jawhari A, Rothnie AJ (2016) Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans 44:838–844. https://doi.org/10.1042/bst20160049
doi: 10.1042/bst20160049
pubmed: 27284049
Aitken A, Learmonth MP (2002) Protein determination by UV absorption. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, NJ, pp 3–6
doi: 10.1385/1-59259-169-8:3
Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55:5445–5451. https://doi.org/10.1021/jf070337l
doi: 10.1021/jf070337l
pubmed: 17539659
Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379. https://doi.org/10.1016/0003-2697(87)90587-2
doi: 10.1016/0003-2697(87)90587-2
pubmed: 2449095
Lo M-C, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159. https://doi.org/10.1016/j.ab.2004.04.031
doi: 10.1016/j.ab.2004.04.031
pubmed: 15301960
Macheroux P (1999) UV-visible spectroscopy as a tool to study flavoproteins. In: Chapman SK, Reid GA (eds) Flavoprotein protocols. Humana Press, Totowa, NJ, pp 1–7
Micsonai A, Wien F, Kernya L, Lee Y-H, Goto Y, Réfrégiers M, Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci U S A 112:E3095–E3103. https://doi.org/10.1073/pnas.1500851112
doi: 10.1073/pnas.1500851112
pubmed: 26038575
pmcid: 4475991
Micsonai A, Wien F, Bulyáki E, Kun J, Moussong E, Lee Y-H, Goto Y, Réfrégiers M, Kardos J (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res 46:W315–W322. https://doi.org/10.1093/nar/gky497
doi: 10.1093/nar/gky497
pubmed: 29893907
pmcid: 6031044
Rabilloud T (1990) Mechanisms of protein silver staining in polyacrylamide gels: a 10-year synthesis. Electrophoresis 11:785–794. https://doi.org/10.1002/elps.1150111003
doi: 10.1002/elps.1150111003
pubmed: 1706657
Rabilloud T (1992) A comparison between low background silver diamine and silver nitrate protein stains. Electrophoresis 13:429–439. https://doi.org/10.1002/elps.1150130190
doi: 10.1002/elps.1150130190
pubmed: 1425556
Fernandez-Patron C (2005) Zn
Edwards RA, Jickling G, Turner RJ (2002) The light-induced reactions of tryptophan with halocompounds. Photochem Photobiol 75:362–368. https://doi.org/10.1562/0031-8655(2002)0750362tlirot2.0.co2
doi: 10.1562/0031-8655(2002)0750362tlirot2.0.co2
pubmed: 12003125
Voytas D, Ke N (2001) Detection and quantitation of radiolabeled proteins in gels and blots. Curr Protoc Cell Biol Chapter 6:Unit 6.3. https://doi.org/10.1002/0471143030.cb0603s10
doi: 10.1002/0471143030.cb0603s10
pubmed: 18228375