The Structural and Electrophysiological Properties of Progesterone Receptor-Expressing Neurons Vary along the Anterior-Posterior Axis of the Ventromedial Hypothalamus and Undergo Local Changes across the Reproductive Cycle.
intrinsic excitability
progesterone receptor
reproductive cycle
structural plasticity
ventrolateral part of the ventromedial hypothalamus
whole-cell recordings
Journal
eNeuro
ISSN: 2373-2822
Titre abrégé: eNeuro
Pays: United States
ID NLM: 101647362
Informations de publication
Date de publication:
Historique:
received:
07
02
2021
revised:
06
04
2021
accepted:
07
04
2021
pubmed:
22
4
2021
medline:
3
7
2021
entrez:
21
4
2021
Statut:
epublish
Résumé
Sex hormone levels continuously fluctuate across the reproductive cycle, changing the activity of neuronal circuits to coordinate female behavior and reproductive capacity. The ventrolateral division of the ventromedial hypothalamus (VMHvl) contains neurons expressing receptors for sex hormones and its function is intimately linked to female sexual receptivity. However, recent findings suggest that the VMHvl is functionally heterogeneous. Here, we used whole recordings and intracellular labeling to characterize the electrophysiological and morphologic properties of individual VMHvl neurons in naturally cycling females and report the existence of multiple electrophysiological phenotypes within the VMHvl. We found that the properties of progesterone receptor expressing (PR+) neurons, but not PR- neurons, depended systematically on the neuron's location along the anterior-posterior (AP) axis of the VMHvl and the phase within the reproductive cycle. Prominent among this, the resting membrane potential of anterior PR+ neurons decreased during the receptive phase, while the excitability of medial PR+ neurons increased during the non-receptive phase. During the receptive phase of the cycle, posterior PR+ neurons simultaneously showed an increase in dendritic complexity and a decrease in spine density. These findings reveal an extensive diversity of local rules driving structural and physiological changes in response to fluctuating levels of sex hormones, supporting the anatomic and functional subdivision of the VMHvl and its possible role in the orchestration of different aspects of female socio-sexual behavior.
Identifiants
pubmed: 33879568
pii: ENEURO.0049-21.2021
doi: 10.1523/ENEURO.0049-21.2021
pmc: PMC8184219
pii:
doi:
Substances chimiques
Receptors, Progesterone
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 Dias et al.
Références
Int J Endocrinol. 2015;2015:949085
pubmed: 26491443
Cell. 2013 May 9;153(4):896-909
pubmed: 23663785
Brain Res. 1973 May 30;55(1):71-87
pubmed: 4713193
J Comp Neurol. 2008 Oct 20;510(6):631-40
pubmed: 18698598
J Comp Neurol. 2018 Feb 15;526(3):373-396
pubmed: 29063602
Neuroendocrinology. 1991 Mar;53(3):261-7
pubmed: 2041587
BMC Dev Biol. 2001;1:4
pubmed: 11299042
J Comp Neurol. 2002 Jun 3;447(3):234-48
pubmed: 11984818
Neuron. 2016 Nov 23;92(4):739-753
pubmed: 27974160
J Comp Neurol. 2002 Jul 1;448(3):217-29
pubmed: 12115705
Front Neuroendocrinol. 2011 Apr;32(2):124-36
pubmed: 21338620
Cell. 2015 Jun 4;161(6):1334-44
pubmed: 26046438
Curr Protoc Neurosci. 2009 Jul;Appendix 4:Appendix 4I
pubmed: 19575469
Front Neurosci. 2016 Mar 31;10:109
pubmed: 27065780
Brain Res. 1982 May 27;240(2):221-33
pubmed: 7104686
J Neuroendocrinol. 2011 Jun;23(6):465-71
pubmed: 21518031
J Physiol. 1979 Mar;288:203-10
pubmed: 469716
Cell. 2019 Nov 27;179(6):1393-1408.e16
pubmed: 31735496
Nat Neurosci. 2010 Jan;13(1):133-40
pubmed: 20023653
Endocrinology. 1980 Feb;106(2):504-9
pubmed: 6986255
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7503-7512
pubmed: 30898882
Endocrinology. 1997 Jan;138(1):507-10
pubmed: 8977441
Curr Top Behav Neurosci. 2019;43:1-44
pubmed: 30779050
Nat Neurosci. 2017 Nov;20(11):1580-1590
pubmed: 28920934
Cell Rep. 2019 Feb 12;26(7):1747-1758.e5
pubmed: 30759387
J Physiol. 2008 Dec 15;586(24):5911-29
pubmed: 18936078
J Endocrinol. 2017 May;233(2):197-207
pubmed: 28283583
iScience. 2020 Mar 27;23(3):100877
pubmed: 32062422
J Neurophysiol. 1996 May;75(5):1806-14
pubmed: 8734581
Neuron. 2011 Jul 14;71(1):142-54
pubmed: 21745644
Neuroendocrinology. 1983 Sep;37(3):218-24
pubmed: 6621803
Physiol Behav. 2009 May 25;97(2):151-6
pubmed: 19254731
Neuroendocrinology. 1989 May;49(5):454-61
pubmed: 2657476
Neurobiol Stress. 2015 Jan 1;1:23-32
pubmed: 25506603
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
J Neurosci. 2000 Feb 15;20(4):1589-96
pubmed: 10662848
eNeuro. 2018 Jul 2;5(3):
pubmed: 29971248
Elife. 2015 Mar 06;4:
pubmed: 25748136
J Neurosci. 2012 Jun 6;32(23):8074-83
pubmed: 22674282
J Comp Neurol. 2012 Dec 1;520(17):3863-76
pubmed: 22522889
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25789-25799
pubmed: 32973099
Proc Natl Acad Sci U S A. 1989 Sep;86(18):7228-32
pubmed: 2550936
Front Neuroendocrinol. 2006 Jul;27(2):193-209
pubmed: 16603233
Trends Neurosci. 2007 May;30(5):220-7
pubmed: 17400299
Endocrinology. 1983 Aug;113(2):797-804
pubmed: 6683623
Bioinformatics. 2011 Sep 1;27(17):2453-4
pubmed: 21727141
Physiol Behav. 2000 Jul 1-15;70(1-2):205-9
pubmed: 10978497
Curr Biol. 2015 Mar 2;25(5):589-94
pubmed: 25683805
Curr Opin Neurobiol. 1999 Dec;9(6):751-8
pubmed: 10607643
J Neurosci. 2008 Jan 9;28(2):385-94
pubmed: 18184781
Endocrinology. 2020 Oct 1;161(10):
pubmed: 32845294
Epilepsia. 2006 Sep;47(9):1423-40
pubmed: 16981857
J Physiol. 1979 Mar;288:189-202
pubmed: 469715
Nature. 2014 May 29;509(7502):627-32
pubmed: 24739975
Elife. 2017 Jul 06;6:
pubmed: 28682237
J Comp Neurol. 2010 Nov 15;518(22):4531-45
pubmed: 20886620
Cell. 2019 Oct 17;179(3):713-728.e17
pubmed: 31626771
Nature. 1978 Jul 20;274(5668):276-8
pubmed: 683307
Breast Cancer Res Treat. 1993 Oct;28(1):29-39
pubmed: 8123867
Eur J Neurosci. 2004 Dec;20(12):3281-5
pubmed: 15610160
Front Syst Neurosci. 2015 Aug 04;9:111
pubmed: 26300745
Brain Res. 1985 Nov 11;347(1):1-10
pubmed: 2864983
J Sex Med. 2010 Jul;7(7):2411-23
pubmed: 20487238