Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 04 2021
Historique:
received: 13 01 2021
accepted: 26 03 2021
entrez: 21 4 2021
pubmed: 22 4 2021
medline: 15 12 2021
Statut: epublish

Résumé

Thermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. The latter are often not available due to unknown Gibbs free energy change of formation [Formula: see text], of metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction lumping has been proposed to eliminate metabolites with unknown [Formula: see text]. However, the lumping procedure has not been formalized nor implemented for systematic identification of lumped reactions. Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to genome-scale metabolic models. It is based on identification of groups of metabolites with unknown [Formula: see text] whose elimination can be conducted independently of the others via: (1) group implementation, aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to ensure that a maximal number of metabolites with unknown [Formula: see text] are eliminated. Our comparative analysis with genome-scale metabolic models of Escherichia coli, Bacillus subtilis, and Homo sapiens shows that the combined procedure provides an efficient means for systematic identification of lumped reactions. We also demonstrate that TMFA applied to models with reactions lumped according to the proposed procedure lead to more precise predictions in comparison to the original models. The provided implementation thus ensures the reproducibility of the findings and their application with standard TMFA.

Identifiants

pubmed: 33879809
doi: 10.1038/s41598-021-87643-8
pii: 10.1038/s41598-021-87643-8
pmc: PMC8058346
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8544

Références

Genome Res. 2004 Feb;14(2):301-12
pubmed: 14718379
Appl Environ Microbiol. 2005 Dec;71(12):7880-7
pubmed: 16332763
PLoS Comput Biol. 2017 Jul 20;13(7):e1005444
pubmed: 28727725
Mol Syst Biol. 2017 Aug 3;13(8):935
pubmed: 28779005
Genome Biol. 2009;10(6):R69
pubmed: 19555510
Appl Environ Microbiol. 1994 Oct;60(10):3724-31
pubmed: 7986045
Biotechnol Bioeng. 1990 Dec 5;36(10):1070-82
pubmed: 18595046
Trends Biotechnol. 2005 Nov;23(11):544-6
pubmed: 16154652
Bioinformatics. 2003 May 22;19(8):1027-34
pubmed: 12761067
Genome Res. 2004 Nov;14(11):2367-76
pubmed: 15520298
Bioinformatics. 2016 Sep 1;32(17):i755-i762
pubmed: 27587698
PLoS Comput Biol. 2012;8(7):e1002575
pubmed: 22792053
PLoS Comput Biol. 2017 Mar 23;13(3):e1005397
pubmed: 28333921
Curr Opin Microbiol. 2010 Jun;13(3):350-7
pubmed: 20378394
Bioinformatics. 2019 Jan 1;35(1):167-169
pubmed: 30561545
Nat Chem Biol. 2016 Jul;12(7):482-9
pubmed: 27159581
Nat Commun. 2020 Jun 4;11(1):2821
pubmed: 32499584
Plant J. 2015 Mar;81(5):822-35
pubmed: 25600836
Front Plant Sci. 2015 Feb 17;6:49
pubmed: 25741348
Biophys J. 2006 Feb 15;90(4):1453-61
pubmed: 16299075
PLoS Comput Biol. 2019 May 13;15(5):e1007036
pubmed: 31083653
Biophys J. 2007 Mar 1;92(5):1792-805
pubmed: 17172310
Biophys J. 2013 Jul 16;105(2):512-22
pubmed: 23870272
J Bacteriol. 2003 May;185(9):2692-9
pubmed: 12700248
Genome Biol. 2003;4(9):R54
pubmed: 12952533
Biophys J. 2008 Aug;95(3):1487-99
pubmed: 18645197
Bioinformatics. 2012 Aug 1;28(15):2037-44
pubmed: 22645166
Nucleic Acids Res. 2021 Jan 8;49(D1):D575-D588
pubmed: 32986834
Front Plant Sci. 2014 Sep 19;5:491
pubmed: 25285097
Biotechnol Bioeng. 2003 Dec 20;84(6):647-57
pubmed: 14595777
PLoS Comput Biol. 2005 Dec;1(7):e68
pubmed: 16362071
Metab Eng. 2021 May;65:207-222
pubmed: 33161143

Auteurs

Lea Seep (L)

Bioinformatics, Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

Zahra Razaghi-Moghadam (Z)

Bioinformatics, Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.

Zoran Nikoloski (Z)

Bioinformatics, Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany. zniko@uni-potsdam.de.
Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany. zniko@uni-potsdam.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH