In vitro anti-inflammatory and antioxidant activities of ZnFe
Boswellia carteri resin
CrFe2O4
ZnFe2O4
anti-inflammatory
antioxidant
green synthesis
nanoparticles
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
25
02
2021
received:
19
12
2020
accepted:
29
03
2021
pubmed:
22
4
2021
medline:
10
7
2021
entrez:
21
4
2021
Statut:
ppublish
Résumé
The development of plant-based nano-materials is considered an eco-friendly technology because it does not involve hazardous chemicals. In this study, bimetallic ZnFe
Substances chimiques
Anti-Inflammatory Agents
0
Antioxidants
0
Plant Extracts
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13730Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Aathira, C., Arivarasu, L., & Rajeshkumar, S. (2020). Antioxidant and anti-inflammatory potential of chromium picolinate mediated zinc oxide nanoparticle. Journal of Pharmaceutical Research International, 118-121. https://doi.org/10.9734/jpri/2020/v32i1930717
Al-Awaida, W., Al-Hourani, B. J., Akash, M., Talib, W. H., Zein, S., Falah, R. R., & Aburubaiha, Z. (2018). In vitro anticancer, anti-inflammatory, and antioxidant potentials of Ephedra aphylla. Journal of Cancer Research and Therapeutics, 14(6), 1350. https://doi.org/10.4103/0973-1482.196760
Al-Hunaiti, A., Mohaidat, Q., Bsoul, I., Mahmood, S., Taher, D., & Hussein, T. (2020). Synthesis and characterization of novel phyto-mediated catalyst, and its application for a selective oxidation of (VAL) into vanillin under visible light. Catalysts, 10(8), 839. https://doi.org/10.3390/catal10080839
Aseervatham, G. S. B., Sivasudha, T., Jeyadevi, R., & Ananth, D. A. (2013). Environmental factors and unhealthy lifestyle influence oxidative stress in humans-An overview. Environmental Science and Pollution Research, 20(7), 4356-4369. https://doi.org/10.1007/s11356-013-1748-0
Assadpour, S., Nabavi, S., Nabavi, S., Dehpour, A., & Ebrahimzadeh, M. (2016). In vitro antioxidant and antihemolytic effects of the essential oil and methanolic extract of Allium rotundum L. European Review for Medical and Pharmacological Sciences, 20(24), 5210.
Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: Journey inside the cell. Chemical Society Reviews, 46(14), 4218-4244. https://doi.org/10.1039/C6CS00636A
Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 94(2), 329-354. https://doi.org/10.1152/physrev.00040.2012
Chambers, S. A., Droubay, T. C., Kaspar, T. C., Nayyar, I. H., McBriarty, M. E., Heald, S. M., & Sushko, P. V. (2017). Electronic and optical properties of a semiconducting spinel (Fe2CrO4). Advanced Functional Materials, 27(9), 1605040.
Chen, H., Dorrigan, A., Saad, S., Hare, D. J., Cortie, M. B., & Valenzuela, S. M. (2013). In vivo study of spherical gold nanoparticles: Inflammatory effects and distribution in mice. PLoS One, 8(2), e58208. https://doi.org/10.1371/journal.pone.0058208
Chen, Y., Wang, M., Rosen, R. T., & Ho, C.-T. (1999). 2, 2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb. Journal of Agricultural and Food Chemistry, 47(6), 2226-2228.
Cheng, T., Zhang, D., Li, H., & Liu, G. (2014). Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chemistry, 16(7), 3401-3427. https://doi.org/10.1039/C4GC00458B
Gac, W., Zawadzki, W., Słowik, G., Greluk, M., Pawlonka, J., & Machocki, A. (2016). Chromium-modified zinc oxides. Journal of Thermal Analysis and Calorimetry, 125(3), 1205-1215. https://doi.org/10.1007/s10973-016-5586-4
Goyal, A., Bansal, S., & Singhal, S. (2014). Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M= Ni, Cu, Zn) nano ferrites. International Journal of Hydrogen Energy, 39(10), 4895-4908.
Horie, M., Nishio, K., Endoh, S., Kato, H., Fujita, K., Miyauchi, A., Nakamura, A., Kinugasa, S., Yamamoto, K., Niki, E., Yoshida, Y., & Iwahashi, H. (2013). Chromium (III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environmental Toxicology, 28(2), 61-75. https://doi.org/10.1002/tox.20695
Hu, N., Han, X., Lane, E. K., Gao, F., Zhang, Y., & Ren, J. (2013). Cardiac-specific overexpression of metallothionein rescues against cigarette smoking exposure-induced myocardial contractile and mitochondrial damage. PLoS ONE, 8(2), e57151. https://doi.org/10.1371/journal.pone.0057151
Iqbal, J., Abbasi, B. A., Munir, A., Uddin, S., Kanwal, S., & Mahmood, T. (2020). Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities. Microscopy Research and Technique, 83(6), 706-719. https://doi.org/10.1002/jemt.23460
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650. https://doi.org/10.1039/c1gc15386b
Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25(1), 11-24.
Jayaraj, R. L., Tamilselvam, K., Manivasagam, T., & Elangovan, N. (2013). Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. Journal of Molecular Neuroscience, 51(3), 863-870. https://doi.org/10.1007/s12031-013-0075-8
Karuna, D., Dey, P., Das, S., Kundu, A., & Bhakta, T. (2018). In vitro antioxidant activities of root extract of Asparagus racemosus Linn. Journal of Traditional and Complementary Medicine, 8(1), 60-65.
Khan, M., & Akhtar, M. (2003). Synthesis of some new 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives and their biological activity. ChemInform, 34(32), 900-904.
Kim, C.-S., Nguyen, H.-D., Ignacio, R. M., Kim, J.-H., Cho, H.-C., Maeng, E. H., & Kim, S.-K. (2014). Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. International Journal of Nanomedicine, 9(Suppl 2), 195.
Kim, D. H., Chung, J. H., Yoon, J. S., Ha, Y. M., Bae, S., Lee, E. K., Jung, K. J., Kim, M. S., Kim, Y. J., Kim, M. K., & Chung, H. Y. (2013). Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264. 7 cells and mouse liver. Journal of Ginseng Research, 37(1), 54. https://doi.org/10.5142/jgr.2013.37.54
Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorganic Chemistry and Applications. 2014, 1-7.
Liu, F., Niu, F., Peng, N., Su, Y., & Yang, Y. (2015). Synthesis, characterization, and application of Fe 3 O 4@ SiO 2-NH 2 nanoparticles. RSC Advances, 5(23), 18128-18136.
Liu, J., Xiao, J., Zeng, X., Dong, P., Zhao, J., Zhang, Y., & Li, X. (2017). Combustion synthesized macroporous structure MFe2O4 (M= Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 699, 401-407. https://doi.org/10.1016/j.jallcom.2016.12.225
Meng, Z., Yan, C., Deng, Q., Gao, D.-F., & Niu, X.-L. (2013). Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacologica Sinica, 34(7), 901-911. https://doi.org/10.1038/aps.2013.24
Nagajyothi, P., Sreekanth, T., Tettey, C. O., Jun, Y. I., & Mook, S. H. (2014). Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorganic & Medicinal Chemistry Letters, 24(17), 4298-4303. https://doi.org/10.1016/j.bmcl.2014.07.023
Narayan, N., Meiyazhagan, A., & Vajtai, R. (2019). Metal nanoparticles as green catalysts. Materials, 12(21), 3602. https://doi.org/10.3390/ma12213602
Olbert, M., Gdula-Argasińska, J., Nowak, G., & Librowski, T. (2017). Beneficial effect of nanoparticles over standard form of zinc oxide in enhancing the anti-inflammatory activity of ketoprofen in rats. Pharmacological Reports, 69(4), 679-682. https://doi.org/10.1016/j.pharep.2017.02.004
Pati, R., Das, I., Mehta, R. K., Sahu, R., & Sonawane, A. (2016). Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicological Sciences, 150(2), 454-472. https://doi.org/10.1093/toxsci/kfw010
Rossi, L. M., Costa, N. J., Silva, F. P., & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chemistry, 16(6), 2906-2933. https://doi.org/10.1039/c4gc00164h
Sati, S., Sati, M., Raturi, R., Badoni, P., & Singh, H. (2011). A new flavonoidal glycoside from stem bark of Zanthoxylum armatum. IJPI's Journal of Pharmacognosy and Herbal Formulations, 1(2), 29-32.
Senapati, V. A., Jain, A. K., Gupta, G. S., Pandey, A. K., & Dhawan, A. (2015). Chromium oxide nanoparticle-induced genotoxicity and p53-dependent apoptosis in human lung alveolar cells. Journal of Applied Toxicology, 35(10), 1179-1188. https://doi.org/10.1002/jat.3174
Shrivastava, R., Upreti, R., Seth, P., & Chaturvedi, U. (2002). Effects of chromium on the immune system. FEMS Immunology & Medical Microbiology, 34(1), 1-7. https://doi.org/10.1111/j.1574-695X.2002.tb00596.x
Singh, S. P., Chinde, S., Kamal, S. S. K., Rahman, M., Mahboob, M., & Grover, P. (2016). Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure. Environmental Science and Pollution Research, 23(4), 3914-3924.
Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. https://doi.org/10.1016/j.foodchem.2018.09.040
Terpiłowska, S., & Siwicki, A. K. (2011). Review paper The role of selected microelements: Selenium, zinc, chromium and iron in immune system. Central European Journal of Immunology, 36(4), 303-307.
Untea, A., Lupu, A., Saracila, M., & Panaite, T. (2018). Comparison of ABTS, DPPH, phosphomolybdenum assays for estimating antioxidant activity and phenolic compounds in five different plant extracts. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 75(2), 110-114. https://doi.org/10.15835/buasvmcn-asb:2018.0009
Wong, K. K. Y., Cheung, S. O. F., Huang, L., Niu, J., Tao, C., Ho, C.-M., Che, C.-M., & Tam, P. K. H. (2009). Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem: Chemistry Enabling Drug Discovery, 4(7), 1129-1135. https://doi.org/10.1002/cmdc.200900049
Zolnik, B. S., González-Fernández, Á., Sadrieh, N., & Dobrovolskaia, M. A. (2010). Minireview: Nanoparticles and the immune system. Endocrinology, 151(2), 458-465. https://doi.org/10.1210/en.2009-1082