The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication.
automated patterning
focused He ion beam
graphene
magnetic multilayers
mechanical resonator
pattern generation
plasmonic antennas
two-dimensional materials
Journal
Beilstein journal of nanotechnology
ISSN: 2190-4286
Titre abrégé: Beilstein J Nanotechnol
Pays: Germany
ID NLM: 101551563
Informations de publication
Date de publication:
2021
2021
Historique:
received:
17
11
2020
accepted:
05
03
2021
entrez:
23
4
2021
pubmed:
24
4
2021
medline:
24
4
2021
Statut:
epublish
Résumé
Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
Identifiants
pubmed: 33889477
doi: 10.3762/bjnano.12.25
pmc: PMC8042487
doi:
Types de publication
Journal Article
Langues
eng
Pagination
304-318Informations de copyright
Copyright © 2021, Deinhart et al.
Références
Rev Sci Instrum. 2014 Dec;85(12):123703
pubmed: 25554297
Nat Nanotechnol. 2013 Mar;8(3):152-6
pubmed: 23459548
Nat Nanotechnol. 2014 Oct;9(10):780-93
pubmed: 25286273
Nat Nanotechnol. 2016 Feb;11(2):112
pubmed: 26839254
Science. 2008 Jun 6;320(5881):1308
pubmed: 18388259
J Microsc. 2017 Mar;265(3):307-312
pubmed: 28117892
Nat Commun. 2016 Aug 09;7:12496
pubmed: 27502017
Nano Lett. 2021 Mar 10;21(5):2174-2182
pubmed: 33622035
Nat Commun. 2019 Oct 17;10(1):4726
pubmed: 31624243
Nanotechnology. 2019 Oct 25;30(43):435301
pubmed: 31393838
Science. 2008 Jul 18;321(5887):385-8
pubmed: 18635798
Nano Lett. 2018 Nov 14;18(11):7362-7371
pubmed: 30295499
Phys Rev Lett. 2018 Mar 16;120(11):117201
pubmed: 29601740
Nanotechnology. 2013 Oct 4;24(39):395301
pubmed: 24013454
Nano Lett. 2012 Sep 12;12(9):4681-6
pubmed: 22889415
Nat Commun. 2015 Nov 06;6:8789
pubmed: 26541811
Science. 2009 Aug 28;325(5944):1103-7
pubmed: 19628816
Science. 1998 Jun 19;280(5371):1919-22
pubmed: 9632386
Nano Lett. 2014 Aug 13;14(8):4778-84
pubmed: 25051422
Science. 2016 Jul 29;353(6298):aac9439
pubmed: 27471306
Nature. 2020 Jul;583(7818):780-784
pubmed: 32728238
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5509-5516
pubmed: 30644713
Nano Lett. 2018 Aug 8;18(8):5132-5137
pubmed: 29989827
Nano Lett. 2011 Aug 10;11(8):3227-31
pubmed: 21728349
Nat Commun. 2010;1:150
pubmed: 21267000
Nature. 2004 Dec 16;432(7019):885-8
pubmed: 15602557
Nat Nanotechnol. 2012 Apr 01;7(5):301-4
pubmed: 22466856
Rep Prog Phys. 2012 Feb;75(2):024402
pubmed: 22790344
Micron. 2017 Oct;101:8-15
pubmed: 28582658