Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images.
Convolutional neural network
DAT SPECT
Motor outcome prediction
Parkinson's disease
Journal
Computers in biology and medicine
ISSN: 1879-0534
Titre abrégé: Comput Biol Med
Pays: United States
ID NLM: 1250250
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
received:
14
12
2020
revised:
26
02
2021
accepted:
03
03
2021
pubmed:
24
4
2021
medline:
6
7
2021
entrez:
23
4
2021
Statut:
ppublish
Résumé
Dopamine transporter (DAT) SPECT imaging is routinely used in the diagnosis of Parkinson's disease (PD). Our previous efforts demonstrated the use of DAT SPECT images in a data-driven manner by improving prediction of PD clinical assessment outcome using radiomic features. In this work, we develop a convolutional neural network (CNN) based technique to predict clinical motor function evaluation scores directly from longitudinal DAT SPECT images and non-imaging clinical measures. Data of 252 subjects from the Parkinson's Progression Markers Initiative (PPMI) database were used in this work. The motor part (III) score of the unified Parkinson's disease rating scale (UPDRS) at year 4 was selected as outcome, and the DAT SPECT images and UPDRS_III scores acquired at year 0 and year 1 were used as input data. The specified inputs and outputs were used to develop a CNN based regression method for prediction. Ten-fold cross-validation was used to test the trained network and the absolute difference between predicted and actual scores was used as the performance metric. Prediction using inputs with and without DAT images was evaluated. Using only UPDRS_III scores at year 0 and year 1, the prediction yielded an average difference of 7.6 ± 6.1 between the predicted and actual year 4 motor scores (range [5, 77]). The average difference was reduced to 6.0 ± 4.8 when longitudinal DAT SPECT images were included, which was determined to be statistically significant via a two-sample t-test, and demonstrates the benefit of including images. This study shows that adding DAT SPECT images to UPDRS_III scores as inputs to deep-learning based prediction significantly improves the outcome. Without requiring segmentation and feature extraction, the CNN based prediction method allows easier and more universial application.
Identifiants
pubmed: 33892414
pii: S0010-4825(21)00106-2
doi: 10.1016/j.compbiomed.2021.104312
pii:
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
104312Informations de copyright
Copyright © 2021 Elsevier Ltd. All rights reserved.