The Energy of Muscle Contraction. III. Kinetic Energy During Cyclic Contractions.
cyclic contractions
finite element method
inertia
muscle mass
muscle mechanics
skeletal muscle
Journal
Frontiers in physiology
ISSN: 1664-042X
Titre abrégé: Front Physiol
Pays: Switzerland
ID NLM: 101549006
Informations de publication
Date de publication:
2021
2021
Historique:
received:
13
11
2020
accepted:
23
02
2021
entrez:
26
4
2021
pubmed:
27
4
2021
medline:
27
4
2021
Statut:
epublish
Résumé
During muscle contraction, chemical energy is converted to mechanical energy when ATP is hydrolysed during cross-bridge cycling. This mechanical energy is then distributed and stored in the tissue as the muscle deforms or is used to perform external work. We previously showed how energy is distributed through contracting muscle during fixed-end contractions; however, it is not clear how the distribution of tissue energy is altered by the kinetic energy of muscle mass during dynamic contractions. In this study we conducted simulations of a 3D continuum muscle model that accounts for tissue mass, as well as force-velocity effects, in which the muscle underwent sinusoidal work-loop contractions coupled with bursts of excitation. We found that increasing muscle size, and therefore mass, increased the kinetic energy per unit volume of the muscle. In addition to greater relative kinetic energy per cycle, relatively more energy was also stored in the aponeurosis, and less was stored in the base material, which represented the intra and extracellular tissue components apart from the myofibrils. These energy changes in larger muscles due to greater mass were associated lower mass-specific mechanical work output per cycle, and this reduction in mass-specific work was greatest for smaller initial pennation angles. When we compared the effects of mass on the model tissue behaviour to that of
Identifiants
pubmed: 33897449
doi: 10.3389/fphys.2021.628819
pmc: PMC8058367
doi:
Types de publication
Journal Article
Langues
eng
Pagination
628819Informations de copyright
Copyright © 2021 Ross, Domínguez, Nigam and Wakeling.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Appl Physiol (1985). 2009 Oct;107(4):1276-84
pubmed: 19608924
J Appl Physiol (1985). 2018 Aug 1;125(2):513-519
pubmed: 29792551
J Physiol. 2009 Sep 1;587(Pt 17):4309-18
pubmed: 19596897
Proc Biol Sci. 2014 Apr 02;281(1783):20140002
pubmed: 24695429
Biomech Model Mechanobiol. 2013 Nov;12(6):1205-20
pubmed: 23417261
Crit Rev Biomed Eng. 1989;17(4):359-411
pubmed: 2676342
J Biomech. 2011 Sep 23;44(14):2538-43
pubmed: 21840006
J Appl Physiol (1985). 2002 Jun;92(6):2381-9
pubmed: 12015351
Front Physiol. 2020 Nov 12;11:538522
pubmed: 33281608
J R Soc Interface. 2015 Aug 6;12(109):20150365
pubmed: 26156300
Integr Comp Biol. 2018 Aug 1;58(2):219-231
pubmed: 29889253
Front Physiol. 2020 May 12;11:448
pubmed: 32477162
Am J Physiol. 1994 Mar;266(3 Pt 2):R1022-31
pubmed: 8160851
Acta Physiol Scand. 1988 Mar;132(3):341-52
pubmed: 3265837
Front Zool. 2016 Feb 18;13:8
pubmed: 26893606
J Exp Biol. 2005 Feb;208(Pt 4):771-86
pubmed: 15695768
J Exp Biol. 2018 Aug 1;221(Pt 15):
pubmed: 29844202
Eur J Appl Physiol. 2013 Feb;113(2):437-47
pubmed: 22777499
Comput Math Methods Med. 2012;2012:848630
pubmed: 23227110
J Biomech. 2019 Mar 27;86:160-166
pubmed: 30792071
PLoS Comput Biol. 2018 Apr 16;14(4):e1006123
pubmed: 29659583
J Biomech. 2007;40(1):157-64
pubmed: 16364330
Front Physiol. 2016 May 25;7:187
pubmed: 27252660
Monogr Physiol Soc. 1985;41:1-357
pubmed: 3843415
J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):473-8
pubmed: 7061301
J Exp Biol. 2020 Oct 7;223(Pt 19):
pubmed: 32737211
Comput Methods Biomech Biomed Engin. 2008 Oct;11(5):489-504
pubmed: 19230146
J Morphol. 1993 Nov;218(2):167-80
pubmed: 8263946
Integr Comp Biol. 2009 Jul;49(1):51-8
pubmed: 21120110
Front Physiol. 2017 Dec 07;8:1015
pubmed: 29270135
Biom J. 2008 Jun;50(3):346-63
pubmed: 18481363
Physiol Rep. 2015 Nov;3(11):
pubmed: 26537346
Integr Comp Biol. 2018 Aug 1;58(2):232-250
pubmed: 29726964
J Appl Biomech. 2013 Jun;29(3):360-4
pubmed: 22927518
Front Physiol. 2020 Aug 31;11:813
pubmed: 32982762
J Physiol. 2003 Jun 15;549(Pt 3):877-88
pubmed: 12717006
J Appl Physiol (1985). 2017 Dec 1;123(6):1433-1442
pubmed: 28860176
Proc Biol Sci. 2019 Apr 10;286(1900):20182764
pubmed: 30966986
J Appl Physiol (1985). 2001 Apr;90(4):1349-58
pubmed: 11247934
J Exp Biol. 2008 Jul;211(Pt 14):2336-45
pubmed: 18587128
Front Physiol. 2014 Aug 13;5:298
pubmed: 25232341
J Theor Biol. 2015 Oct 7;382:57-63
pubmed: 26073723
J Exp Biol. 2003 Oct;206(Pt 19):3437-45
pubmed: 12939374
Biol Lett. 2016 Jun;12(6):
pubmed: 27354711
J Biomech. 2016 Mar 21;49(5):704-709
pubmed: 26944691
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1554-64
pubmed: 21502126