Synthesis, antioxidant, antimicrobial and antiviral docking studies of ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates.
Anti-Infective Agents
/ chemical synthesis
Antioxidants
/ chemistry
Antiviral Agents
/ chemical synthesis
Binding Sites
COVID-19
/ pathology
Density Functional Theory
Fusarium
/ drug effects
Gram-Negative Bacteria
/ drug effects
Gram-Positive Bacteria
/ drug effects
Humans
Molecular Docking Simulation
SARS-CoV-2
/ enzymology
Structure-Activity Relationship
Thiazoles
/ chemistry
Viral Matrix Proteins
/ chemistry
1,3-thiazoles
COVID-19
SARS-CoV-2
antioxidant
thiazole-4-carboxylates
Journal
Zeitschrift fur Naturforschung. C, Journal of biosciences
ISSN: 1865-7125
Titre abrégé: Z Naturforsch C J Biosci
Pays: Germany
ID NLM: 8912155
Informations de publication
Date de publication:
25 Nov 2021
25 Nov 2021
Historique:
received:
14
02
2021
accepted:
09
04
2021
pubmed:
27
4
2021
medline:
11
11
2021
entrez:
26
4
2021
Statut:
epublish
Résumé
A series of ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates
Identifiants
pubmed: 33901389
pii: znc-2021-0042
doi: 10.1515/znc-2021-0042
doi:
Substances chimiques
Anti-Infective Agents
0
Antioxidants
0
Antiviral Agents
0
Thiazoles
0
Viral Matrix Proteins
0
membrane protein, SARS-CoV-2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
467-480Informations de copyright
© 2021 Walter de Gruyter GmbH, Berlin/Boston.
Références
Sadek, B, Al-Tabakha, MM, Fahelelbom, KMS. Antimicrobial prospect of newly synthesized 1, 3-thiazole derivatives. Molecules 2011;16:9386–96. https://doi.org/10.3390/molecules16119386.
Borcea, A-M, Ionuț, I, Crișan, O, Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules 2021;26:624. https://doi.org/10.3390/molecules26030624.
Hameed, S, Akhtar, T, Al-Masoudi, NA, Al-Masoudi, WA, Jones, PG, Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new oxadiazole and thiazole analogs. Med Chem Res 2016;25:2399–409.
Hamade, E, Habib, A, Hachem, A, Hussein, AH, Abbas, M, Hirz, T, et al.. Biological and anti-inflammatory evaluation of two thiazole compounds in RAW cell line: potential cyclooxygenase-2 specific inhibitors. Med Chem 2012;8:401–8. https://doi.org/10.2174/1573406411208030401.
Venkatachalam, T, Qazi, S, Samuel, P, Uckun, F. Substituted heterocyclic thiourea compounds as a new class of anti-allergic agents inhibiting IgE/FcεRI receptor mediated mast cell leukotriene release. Bioorg Med Chem 2003;11:1095–105. https://doi.org/10.1016/s0968-0896(02)00531-x.
Dawood, KM, Eldebss, TM, El-Zahabi, HS, Yousef, MH. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur J Med Chem 2015;102:266–76. https://doi.org/10.1016/j.ejmech.2015.08.005.
de Souza, MVN, de Almeida, MV. Drogas anti-VIH: passado, presente e perspectivas futuras. Quim Nova 2003;26:366–72. https://doi.org/10.1590/s0100-40422003000300014.
Borisenko, V, Koll, A, Kolmakov, E, Rjasnyi, A. Hydrogen bonds of 2-aminothiazoles in intermolecular complexes (1:1 and 1:2) with proton acceptors in solutions. J Mol Struct 2006;783:101–15. https://doi.org/10.1016/j.molstruc.2005.08.006.
Milne, G. In: Ashgate, G, editor. Handbook of antineoplastic agents. London, UK; 2000.
Maj, J, Rogóż, Z, Skuza, G, Kołodziejczyk, K. Antidepressant effects of pramipexole, a novel dopamine receptor agonist. J Neural Transm 1997;104:525–33. https://doi.org/10.1007/bf01277669.
Poff, CD, Balazy, M. Drugs that target lipoxygenases and leukotrienes as emerging therapies for asthma and cancer. Curr Drug Targets Inflamm Allergy 2004;3:19–33. https://doi.org/10.2174/1568010043483917.
Knadler, M, Bergstrom, RF, Callaghan, JT, Rubin, A. Nizatidine, an H2-blocker. Its metabolism and disposition in man. Drug Metabol Dispos 1986;14:175–82.
Breslow, R. On the mechanism of thiamine action. IV. 1 Evidence from studies on model systems. J Am Chem Soc 1958;80:3719–26. https://doi.org/10.1021/ja01547a064.
Duncia, JV, Chiu, AT, Carini, DJ, Gregory, GB, Johnson, AL, Price, WA, et al.. The discovery of potent nonpeptide angiotensin II receptor antagonists: a new class of potent antihypertensives. J Med Chem 1990;33:1312–29. https://doi.org/10.1021/jm00167a007.
Siddiqui, HL, Zia-Ur-Rehman, M, Ahmad, N, Weaver, GW, Lucas, PD. Synthesis and antibacterial activity of bis [2-amino-4-phenyl-5-thiazolyl] disulfides. Chem Pharmaceut Bull 2007;55:1014–7. https://doi.org/10.1248/cpb.55.1014.
Nayab, RS, Maddila, S, Krishna, MP, Titinchi, SJ, Thaslim, BS, Chintha, V, et al.. In silico molecular docking and in vitro antioxidant activity studies of novel α-aminophosphonates bearing 6-amino-1,3-dimethyl uracil. J Recept Sig Transduct 2020;40:166–72. https://doi.org/10.1080/10799893.2020.1722166.
Karalı, N, Güzel, Ö, Özsoy, N, Özbey, S, Salman, A. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur J Med Chem 2010;45:1068–77.
Patil, VP, Markad, VL, Kodam, KM, Waghmode, SB. Facile preparation of tetrahydro-5H-pyrido [1, 2, 3-de]-1,4-benzoxazines via reductive cyclization of 2-(8-quinolinyloxy) ethanones and their antioxidant activity. Bioorg Med Chem Lett 2013;23:6259–63. https://doi.org/10.1016/j.bmcl.2013.09.088.
Abdel-Wahab, BF, Abdel-Gawad, H, Awad, GE, Badria, FA. Synthesis, antimicrobial, antioxidant, anti-inflammatory, and analgesic activities of some new 3-(2′-thienyl) pyrazole-based heterocycles. Med Chem Res 2012;21:1418–26. https://doi.org/10.1007/s00044-011-9661-x.
Usol’tseva, S, Andronnikova, G, Shevyrin, V. Bromination of 2-thiazolylhydrazones. Chem Heterocycl Compd 1993;29:226–30. https://doi.org/10.1007/bf00531672.
Metwally, MA, Bondock, S, El-Azap, H, Kandeel, E-EM. Thiosemicarbazides: synthesis and reactions. J Sulfur Chem 2011;32:489–519. https://doi.org/10.1080/17415993.2011.601869.
Haroon, M, Khalid, M, Akhtar, T, Tahir, MN, Khan, MU, Muhammad, S, et al.. Synthesis, crystal structure, spectroscopic, electronic and nonlinear optical properties of potent thiazole based derivatives: joint experimental and computational insight. J Mol Struct 2020;1202:127354. https://doi.org/10.1016/j.molstruc.2019.127354.
Haroon, M, Khalid, M, Akhtar, T, Tahir, MN, Khan, MU, Saleem, M, et al.. Synthesis, spectroscopic, SC-XRD characterizations and DFT based studies of ethyl2-(substituted-(2-benzylidenehydrazinyl)) thiazole-4-carboxylate derivatives. J Mol Struct 2019;1187:164–71. https://doi.org/10.1016/j.molstruc.2019.03.075.
Haroon, M, Akhtar, T, Yousuf, M, Baig, MW, Tahir, MN, Rasheed, L. Synthesis, spectroscopic characterization and crystallographic behavior of ethyl 2-(4-methyl-(2-benzylidenehydrazinyl)) thiazole-4-carboxylate: experimental and theoretical (DFT) studies. J Mol Struct 2018;1167:154–60. https://doi.org/10.1016/j.molstruc.2018.04.083.
Haroon, M, de Barros Dias, MCH, da Silva Santos, AC, Pereira, VRA, Freitas, LAB, Balbinot, RB, et al.. The design, synthesis, and in vitro trypanocidal and leishmanicidal activities of 1,3-thiazole and 4-thiazolidinone ester derivatives. RSC Adv 2021;11:2487–500. https://doi.org/10.1039/d0ra06994a.
Wang, P, Hu, M, Wang, H, Chen, Z, Feng, Y, Wang, J, et al.. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv Sci 2020;7:2001116. https://doi.org/10.1002/advs.202001116.
Kazmi, STB, Majid, M, Maryam, S, Rahat, A, Ahmed, M, Khan, MR, et al.. Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague–Dawley rats. Biomed Pharmacother 2018;102:728–38. https://doi.org/10.1016/j.biopha.2018.03.097.
Kato, T, Ozaki, T, Tamura, K, Suzuki, Y, Akima, M, Ohi, N. Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure–activity relationships of thiazolidinone derivatives. J Med Chem 1999;42:3134–46. https://doi.org/10.1021/jm9900927.
Gouda, MA, Abu‐Hashem, AA. Synthesis, characterization, antioxidant and antitumor evaluation of some new thiazolidine and thiazolidinone derivatives. Arch Pharmazie 2011;344:170–7. https://doi.org/10.1002/ardp.201000165.
Shih, M-H, Ke, F-Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg Med Chem 2004;12:4633–43. https://doi.org/10.1016/j.bmc.2004.06.033.
Djukic, M, Fesatidou, M, Xenikakis, I, Geronikaki, A, Angelova, VT, Savic, V, et al.. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem Biol Interact 2018;286:119–31. https://doi.org/10.1016/j.cbi.2018.03.013.
Gjorgieva Ackova, D, Kotur-Stevuljevic, J, Bhushan Mishra, C, Mehta Luthra, P, Saso, L. Antioxidant properties of synthesized bicyclic thiazolopyrimidine derivatives as possible therapeutic agents. Appl Sci 2019;9:113.
Omar, K, Geronikaki, A, Zoumpoulakis, P, Camoutsis, C, Soković, M, Ćirić, A, et al.. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg Med Chem 2010;18:426–32. https://doi.org/10.1016/j.bmc.2009.10.041.
Shrivastava, B, Sharma, O, Sharma, P, Singh, J. Synthesis, characterization and antimicrobial evaluation of novel azole based (Benzoic Acid) derivatives. Asian J Pharm Pharmacol 2019;5:368–72. https://doi.org/10.31024/ajpp.2019.5.2.21.
Jain, AK, Vaidya, A, Ravichandran, V, Kashaw, SK, Agrawal, RK. Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg Med Chem 2012;20:3378–95. https://doi.org/10.1016/j.bmc.2012.03.069.
Šarkanj, B, Molnar, M, Čačić, M, Gille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem 2013;139:488–95.
Caricato, M, Trucks, GW, Frisch, MJ, Wiberg, KB. Electronic transition energies: a study of the performance of a large range of single reference density functional and wave function methods on valence and Rydberg states compared to experiment. J Chem Theor Comput 2010;6:370–83. https://doi.org/10.1021/ct9005129.
Wang, Y-J, Zhao, Y-F, Li, W-L, Jian, T, Chen, Q, You, X-R, et al.. Observation and characterization of the smallest borospherene, B28− and B28. J Chem Phys 2016;144:064307. https://doi.org/10.1063/1.4941380.
Hanwell, MD, Curtis, DE, Lonie, DC, Vandermeersch, T, Zurek, E, Hutchison, GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 2012;4:1–17. https://doi.org/10.1186/1758-2946-4-17.
Andrienko, GA. Chemcraft. Graphical software for visualization of quantum chemistry computations. 2010.
Khan, MU, Iqbal, J, Khalid, M, Hussain, R, Braga, AAC, Hussain, M, et al.. Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 2019;9:26402–18. https://doi.org/10.1039/c9ra03856f.
Rafiq, M, Khalid, M, Tahir, MN, Ahmad, MU, Khan, MU, Naseer, MM, et al.. Synthesis, XRD, spectral (IR, UV–Vis, NMR) characterization and quantum chemical exploration of benzoimidazole‐based hydrazones: a synergistic experimental–computational analysis. Appl Organomet Chem 2019;33:e5182. https://doi.org/10.1002/aoc.5182.
Khan, B, Khalid, M, Shah, MR, Tahir, MN, Khan, MU, Ali, A, et al.. Efficient synthesis by mono‐carboxy methylation of 4,4′‐biphenol, X‐ray diffraction, spectroscopic characterization and computational study of the crystal packing of ethyl 2‐((4′‐hydroxy‐[1,1′‐biphenyl]‐4‐yl) oxy) acetate. ChemistrySelect 2019;4:9274–84. https://doi.org/10.1002/slct.201901422.
Hussain, A, Khan, MU, Ibrahim, M, Khalid, M, Ali, A, Hussain, S, et al.. Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: a comparison between DFT/TDDFT and experimental study. J Mol Struct 2020;1201:127183. https://doi.org/10.1016/j.molstruc.2019.127183.
Tariq, S, Raza, AR, Khalid, M, Rubab, SL, Khan, MU, Ali, A, et al.. Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J Mol Struct 2020;1203:127438. https://doi.org/10.1016/j.molstruc.2019.127438.
Raza, AR, Nisar, B, Khalid, M, Gondal, HY, Khan, MU, de Alcântara Morais, SF, et al.. A facile microwave assisted synthesis and structure elucidation of (3R)-3-alkyl-4,1-benzoxazepine-2,5-diones by crystallographic, spectroscopic and DFT studies. Spectrochim Acta Mol Biomol Spectrosc 2020;230:117995. https://doi.org/10.1016/j.saa.2019.117995.
Khalid, M, Ali, A, Adeel, M, Din, ZU, Tahir, MN, Rodrigues-Filho, E, et al.. Facile preparation, characterization, SC-XRD and DFT/DTDFT study of diversely functionalized unsymmetrical bis-aryl-α, β-unsaturated ketone derivatives. J Mol Struct 2020;1206:127755. https://doi.org/10.1016/j.molstruc.2020.127755.
Tariq, S, Khalid, M, Raza, AR, Rubab, SL, de Alcântara Morais, SF, Khan, MU, et al.. Experimental and computational investigations of new indole derivatives: a combined spectroscopic, SC-XRD, DFT/TD-DFT and QTAIM analysis. J Mol Struct 2020;1207:127803. https://doi.org/10.1016/j.molstruc.2020.127803.
Ali, A, Khalid, M, Marrugo, KP, Kamal, GM, Saleem, M, Khan, MU, et al.. Spectroscopic and DFT/TDDFT insights of the novel phosphonate imine compounds. J Mol Struct 2020;1207:127838. https://doi.org/10.1016/j.molstruc.2020.127838.
Parr, RG, Lv, S, Liu, S. Electrophilicity index. J Am Chem Soc 1999;121:1922–4. https://doi.org/10.1021/ja983494x.
Parr, RG, Donnelly, RA, Levy, M, Palke, WE. Electronegativity: the density functional viewpoint. J Chem Phys 1978;68:3801–7. https://doi.org/10.1063/1.436185.
Chattaraj, PK, Roy, DR. Update 1 of: electrophilicity index. Chem Rev 2007;107:PR46–74. https://doi.org/10.1021/cr078014b.
Khalid, M, Ali, A, Jawaria, R, Asghar, MA, Asim, S, Khan, MU, et al.. First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv 2020;10:22273–83. https://doi.org/10.1039/d0ra02857f.
Srnec, M, Solomon, EI. Frontier molecular orbital contributions to chlorination versus hydroxylation selectivity in the non-heme iron halogenase SyrB2. J Am Chem Soc 2017;139:2396–407. https://doi.org/10.1021/jacs.6b11995.
Guo, L, Zhu, S, Zhang, S, He, Q, Li, W. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corrosion Sci 2014;87:366–75. https://doi.org/10.1016/j.corsci.2014.06.040.
Wang, T, Yuan, X-S, Wu, M-B, Lin, J-P, Yang, L-R. The advancement of multidimensional QSAR for novel drug discovery-where are we headed? Expet Opin Drug Discov 2017;12:769–84. https://doi.org/10.1080/17460441.2017.1336157.
Trott, O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61. https://doi.org/10.1002/jcc.21334.
Morris, G, Huey, R, Lindstrom, W, Sanner, M., Belew, R., Goodsell, D, et al.. AutoDock4, AutoDockTo, ols4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.
Systèmes, D. Biovia, discovery studio modeling environment. San Diego, CA, USA: Dassault Systèmes Biovia; 2016.
Bolarin, JA, Oluwatoyosi, MA, Orege, JI, Ayeni, EA, Ibrahim, YA, Adeyemi, SB, et al.. Therapeutic drugs for SARS-CoV-2 treatment: current state and perspective. Int Immunopharm 2021;90:107228. https://doi.org/10.1016/j.intimp.2020.107228.
Yang, Y, Zhu, Z, Wang, X, Zhang, X, Mu, K, Shi, Y, et al.. Ligand-based approach for predicting drug targets and for virtual screening against COVID-19. Briefings Bioinf 2021;22:1053–64. https://doi.org/10.1093/bib/bbaa422.
Hayden, FG, Turner, RB, Gwaltney, JM, Chi-Burris, K, Gersten, M, Hsyu, P, et al.. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother 2003;47:3907–16. https://doi.org/10.1128/aac.47.12.3907-3916.2003.
Yang, H, Xie, W, Xue, X, Yang, K, Ma, J, Liang, W, et al.. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005;3:e324. https://doi.org/10.1371/journal.pbio.0030324.
Shi, L, Bucknall, MP, Young, TL, Zhang, M, Hu, L, Bing, J, et al.. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 2020;368. https://doi.org/10.1126/science.aba2412.
Zhang, L, Lin, D, Sun, X, Curth, U, Drosten, C, Sauerhering, L, et al.. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020;368:409–12. https://doi.org/10.1126/science.abb3405.
Muhammad, S, Hassan, SH, Al-Sehemi, AG, Shakir, HA, Khan, M, Irfan, M, et al.. Exploring the new potential antiviral constituents of Moringa oliefera for SARS-COV-2 pathogenesis: an in silico molecular docking and dynamic studies. Chem Phys Lett 2021;767:138379. https://doi.org/10.1016/j.cplett.2021.138379.
Mohan, B, Muhammad, S, Al‐Sehemi, AG, Bharti, S, Kumar, S, Choudhary, M. Synthesis of copper (II) coordination complex, its molecular docking and computational exploration for novel functional properties: a dual approach. ChemistrySelect 2021;6:738–45. https://doi.org/10.1002/slct.202003738.