Superatomic solid solutions.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
18
02
2019
accepted:
10
03
2021
pubmed:
28
4
2021
medline:
28
4
2021
entrez:
27
4
2021
Statut:
ppublish
Résumé
In atomic solids, substitutional doping of atoms into the lattice of a material to form solid solutions is one of the most powerful approaches to modulating its properties and has led to the discovery of various metal alloys and semiconductors. Herein we have prepared solid solutions in hierarchical solids that are built from atomically precise clusters. Two geometrically similar metal chalcogenide clusters, Co
Identifiants
pubmed: 33903737
doi: 10.1038/s41557-021-00680-8
pii: 10.1038/s41557-021-00680-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
607-613Subventions
Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0012704
Organisme : United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
ID : 71641-MS
Organisme : United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
ID : FA9550-18-1-0020
Organisme : National Science Foundation (NSF)
ID : DMR-2011738
Organisme : National Science Foundation (NSF)
ID : DMR-1420634
Références
Corrigan, J. F., Fuhr, O. & Fenske, D. Metal chalcogenide clusters on the border between molecules and materials. Adv. Mater. 21, 1867–1871 (2009).
doi: 10.1002/adma.200802897
Tomalia, D. A. & Khanna, S. N. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem. Rev. 116, 2705–2774 (2016).
doi: 10.1021/acs.chemrev.5b00367
Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118, 5755–5870 (2018).
doi: 10.1021/acs.chemrev.7b00524
Ni, B., Shi, Y. & Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 30, 1802031 (2018).
doi: 10.1002/adma.201802031
Yan, J., Teo, B. K. & Zheng, N. Surface chemistry of atomically precise coinage–metal nanoclusters: from structural control to surface reactivity and catalysis. Acc. Chem. Res. 51, 3084–3093 (2018).
doi: 10.1021/acs.accounts.8b00371
Doud, E. A. et al. Superatoms in materials science. Nat. Rev. Mater. 5, 371–387 (2020).
doi: 10.1038/s41578-019-0175-3
Li, J., Li, X., Zhai, H.-J. & Wang, L.-S. Au
doi: 10.1126/science.1079879
Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).
doi: 10.1038/nature12523
Khanna, S. N. & Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 (1992).
doi: 10.1103/PhysRevLett.69.1664
Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).
doi: 10.1021/nn800820e
Chakraborty, P., Nag, A., Chakraborty, A. & Pradeep, T. Approaching materials with atomic precision using supramolecular cluster assemblies. Acc. Chem. Res. 52, 2–11 (2019).
doi: 10.1021/acs.accounts.8b00369
Haddon, R. C. et al. Conducting films of C
doi: 10.1038/350320a0
Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 (1991).
doi: 10.1038/350600a0
Olson, J. R., Topp, K. A. & Pohl, R. O. Specific heat and thermal conductivity of solid fullerenes. Science 259, 1145–1148 (1993).
doi: 10.1126/science.259.5098.1145
Hou, J. G. et al. Topology of two-dimensional C
doi: 10.1038/35053163
Wang, L. et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).
doi: 10.1126/science.1220522
Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J. & Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354, 1580–1584 (2016).
doi: 10.1126/science.aak9750
Roy, X. et al. Nanoscale atoms in solid-state chemistry. Science 341, 157–160 (2013).
doi: 10.1126/science.1236259
Ong, W. L. et al. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. Nat. Mater. 16, 83–88 (2017).
doi: 10.1038/nmat4739
O’Brien, E. S. et al. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal. Nat. Chem. 9, 1170–1174 (2017).
doi: 10.1038/nchem.2844
Roy, X. et al. Quantum soldering of individual quantum dots. Angew. Chem. Int. Ed. 51, 12473–12476 (2012).
doi: 10.1002/anie.201206301
Hessen, B., Siegrist, T., Palstra, T., Tanzler, S. M. & Steigerwald, M. L. Hexakis(triethylphosphine)octatelluridohexachromium and a molecule-based synthesis of chromium telluride, Cr
doi: 10.1021/ic00075a037
Wells, A. F. Structural Inorganic Chemistry 5th edn (Oxford Univ. Press, 1984).
Chupas, P. J. et al. Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Crystallogr. 36, 1342–1347 (2003).
doi: 10.1107/S0021889803017564
Vegard, L. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 5, 17–26 (1921).
doi: 10.1007/BF01349680
Denton, A. R. & Ashcroft, N. W. Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991).
doi: 10.1103/PhysRevA.43.3161
Streetman, B. G. & Banerjee, S. K. Solid State Electronic Devices: Global Edition. (Pearson education, 2016).
Walid, A. et al. Large area epitaxial germanane for electronic devices. 2D Mater. 2, 035012 (2015).
doi: 10.1088/2053-1583/2/3/035012
Prencipe, I., Dellasega, D., Zani, A., Rizzo, D. & Passoni, M. Energy dispersive x-ray spectroscopy for nanostructured thin film density evaluation. Sci. Technol. Adv. Mat. 16, 025007–025007 (2015).
doi: 10.1088/1468-6996/16/2/025007
Urbach, F. The long-wavelength edge of photographic sensitivity and electronic absorption of solids. Phys. Rev. 92, 1324–1326 (1953).
doi: 10.1103/PhysRev.92.1324
Kuzmany, H., Matus, M., Burger, B. & Winter, J. Raman Scattering in C
doi: 10.1002/adma.19940061004
Reed, C. A. & Bolskar, R. D. Discrete fulleride anions and fullerenium cations. Chem. Rev. 100, 1075–1120 (2000).
doi: 10.1021/cr980017o
Plank, W. et al. Resonance Raman excitation and electronic structure of the single bonded dimers C
doi: 10.1007/s100510070157
Winter, J. & Kuzmany, H. Charge transfer in alkali-metal-doped polymeric fullerenes. Phys. Rev. B 54, 17486–17492 (1996).
doi: 10.1103/PhysRevB.54.17486
Konarev, D. V. et al. Formation of single-bonded (C
doi: 10.1021/ja035546a
Konarev, D. V., Khasanov, S. S., Otsuka, A., Saito, G. & Lyubovskaya, R. N. Negatively charged π-(C
doi: 10.1021/ja062143c
Stephens, P. W. et al. Polymeric fullerene chains in RbC
doi: 10.1038/370636a0
Giacelone, F. & Martin, N. Fullerene polymers: synthesis and properties. Chem. Rev. 106, 5136–5190 (2006).
doi: 10.1021/cr068389h
Turkiewicz, A. et al. Assembling hierarchical cluster solids with atomic precision. J. Am. Chem. Soc. 136, 15873–15876 (2014).
doi: 10.1021/ja508698w
Dubois, D., Kadish, K. M., Flanagan, S. & Wilson, L. J. Electrochemical detection of fulleronium and highly reduced fulleride (C
doi: 10.1021/ja00020a056