Fine structure of the epicuticular secretion coat and associated glands of Pedipalpi and Palpigradi (Arachnida).

Amblypygi Schizomida Thelyphonida Uropygi cerotegument exoskeleton

Journal

Journal of morphology
ISSN: 1097-4687
Titre abrégé: J Morphol
Pays: United States
ID NLM: 0406125

Informations de publication

Date de publication:
08 2021
Historique:
revised: 17 04 2021
received: 27 02 2021
accepted: 19 04 2021
pubmed: 28 4 2021
medline: 26 11 2021
entrez: 27 4 2021
Statut: ppublish

Résumé

Pedipalpi Latreille, 1810 is a poorly studied clade of arachnids comprising the whip spiders (Amblypygi Thorell, 1883), short-tailed whip scorpions (Schizomida Petrunkevitch, 1945) and whip scorpions (Thelyphonida Cambridge, 1872). It has recently been shown that whip spiders coat their exoskeleton with a solid cement layer (cerotegument) that forms elaborate microstructures and turns the cuticle into a super-hydrophobic state. The amblypygid cerotegument provides taxonomic information due to its fine structural diversity, but its presence and variation in the sister groups was previously unknown. The present contribution reports the surface structure of the cuticle in species of Palpigradi, Thelyphonida, and Schizomida to determine if these taxa possess a solid epicuticular secretion coat. Scanning electron microscopy revealed that in addition to Amblypygi only species of Thelyphonida possess solid epicuticular secretion layers. Unlike in Amblypygi, in the Thelyphonida this layer does not usually form microstructures and is less rigidly attached to the underlying cuticle. A species of Typopeltis Pocock, 1894, which exhibited globular structures analogous to the amblypygid cerotegument, was an exception. Glandular structures associated with cement secretions in Amblypygi and Thelyphonida were considered homologous due to similar structure. Solid epicuticular secretion coats were absent from Schizomida, which is interpreted as a secondary loss despite the presence of slit-like glandular openings that appear to produce such epicuticular secretions. The micro-whip scorpion order Palpigradi Thorell, 1900 exhibited markedly different cuticular surface structures and lacked solid epicuticular secretions, consistent with the hypothesis that this order is not closely related to Pedipalpi. These results enhance the knowledge of the small, enigmatic orders of Arachnida.

Identifiants

pubmed: 33905557
doi: 10.1002/jmor.21360
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1158-1169

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Adis, J., Golovatch, S. I., Hoffman, R. L., Hales, D. F., & Burrows, F. J. (1998). Morphological adaptations of the semiaquatic millipede Aporodesminus wallacei Silvestri 1904 with notes on the taxonomy, distribution, habitats and ecology of this and a related species (Pyrgodesmidae Polydesmida Diplopoda). Tropical Zoology, 11(2), 371-387.
Alberti, G., Storch, V., & Renner, H. (1981). Über den feinstrukturellen Aufbau der Milbencuticula (Acari, Arachnida). Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 105, 183-236.
Clouse, R. M., Branstetter, M. G., Buenavente, P., Crowley, L. M., Czekanski-Moir, J., General, D. E. M., Giribet, G., Harvey, M. S., Janies, D. A., Mohagan, A. B., Mohagan, D. P., Sharma, P. P., & Wheeler, W. C. (2017). First global molecular phylogeny and biogeographical analysis of two arachnid orders (Schizomida and Uropygi) supports a tropical Pangean origin and mid-cretaceous diversification. Journal of Biogeography, 44(11), 2660-2672. https://doi.org/10.1111/jbi.13076
Filippov, A. È., Wolff, J. O., Seiter, M., & Gorb, S. N. (2017). Numerical simulation of colloidal self-assembly of super-hydrophobic arachnid cerotegument structures. Journal of Theoretical Biology, 430, 1-8.
Franz-Guess, S., & Starck, J. M. (2020). Microscopic anatomy of Eukoenenina spelaea (Peyerimhoff, 1902) (Arachnida, Palpigradi: Eukoeneniidae). Bonn Zoological Bulletin, 65, 1-125.
Gallant, J., & Hochberg, R. (2017). Elemental characterization of the exoskeleton in the whipscorpions Mastigoproctus giganteus and Typopeltis dalyi (Arachnida: Thelyphonida). Invertebrate Biology, 136(3), 345-359.
Garwood, R. J., Dunlop, J. A., Selden, P. A., Spencer, A. R., Atwood, R. C., Vo, N. T., & Drakopoulos, M. (2016). Almost a spider: A 305-million-year-old fossil arachnid and spider origins. Proceedings of the Royal Society B: Biological Sciences, 283(1827), 20160125. https://doi.org/10.1098/rspb.2016.0125
Gibbons, A. T., Idnurm, A., Seiter, M., Dyer, P. S., Kokolski, M., Goodacre, S. L., Gorb, S. N., & Wolff, J. O. (2019). Amblypygid-fungal interactions: The whip spider exoskeleton as a substrate for fungal growth. Fungal Biology, 123, 497-506.
Giribet, G. (2018). Current views on chelicerate phylogeny-A tribute to Peter Weygoldt. Zoologischer Anzeiger, 273, 7-13.
Giupponi, de L. A. P. & Kury, A. (2013). Two new species of Heterophrynus Pocock, 1894 from Colombia with distribution notes and a new synonymy (Arachnida: Amblypygi: Phrynidae). Zootaxa, 3647, 329-342.
Giupponi, A. P. de Leao, Miranda, G. S. de, & Villareal-Manzanilla, O. (2016). Rowlandius dumitrescoae species group: New diagnosis, key and description of new cave-dwelling species from Brazil (Schizomida, Hubbardiidae). ZooKeys, 632, 13-34.
Guo, Z., Liu, W., & Su, B. L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353(2), 335-355.
Harvey, M. S. (2003). Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing.
Haupt, J. (1996). Revision of east Asian whip scorpiones (Arachnida Uropygi Thelyphonida). II. Thailand and adjacent areas. Arthropoda Selecta, 5(3/4), 53-65.
Haupt, J. (2004a). A new species of whipscorpion from Laos (Arachnida: Uropygi: Thelyphonidae). Senckenbergiana Biologica, 83, 151-155.
Haupt, J. (2004b). Mastigoproctus transoceanicus a synonym of Typopeltis cantonensis (Arachnida, Uropygi, Thelyphonidae). Senckenbergiana Biologica, 83, 157-162.
Haupt, J. (2009). Proposal for the synonymy of some south-east Asian whip scorpion genera (Arachnida: Uropygi: Thelyphonida). Revista Ibérica de Aracnología, 17, 13-20.
Haupt, J., & Song, D. (1996). Revision of east Asian whip scorpions (Arachnida Uropygi Thelyphonida). I. China and Japan. Arthropoda Selecta, 5(3/4), 43-52.
Lozano-Fernandez, J., Tanner, A. R., Giacomelli, M., Carton, R., Vinther, R. C. J., Edgecombe, G. D., & Pisani, D. (2019). Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Communications, 10, 2295. https://doi.org/10.1038/s41467-019-10244-7
Noah, K. E., Hao, J., Li, L., Sun, X., Foley, B., Yang, Q., & Xia, X. (2020). Major revisions in arthropod phylogeny through improved Supermatrix, with support for two possible waves of land invasion by chelicerates. Evolutionary Bioinformatics, 16, 1176934320903735. https://doi.org/10.1177/1176934320903735
Pinto-da-Rocha, R., Andrade, R., & Moreno-González, J. A. (2016). Two new cave-dwelling genera of short-tailed whip-scorpions from Brazil (Arachnida: Schizomida: Hubbardiidae). Zoologia, 33(2), 1-9.
Porto, W., & Pérez-González, A. (2020). Beauty under the mud: Soil crypsis in new species of the Malagasy genus Ankaratrix (Opiliones: Triaenonychidae: Triaenobuninae). Zoologischer Anzeiger, 287, 198-216.
Prendini, L. (2011). Order Thelyphonida Latreille, 1804. In Z.-Q. Zhang (Ed.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 155.
Pugh, P. J. A., King, P. E., & Fordy, M. R. (1987). A comparison of the structure and function of the cerotegument in two species of Cryptostigmata (Acarina). Journal of Natural History, 21(3), 603-616.
Rowland, M. J., & Cooke, J. A. L. (1973). Systematics of the arachnid order Uropygida (= Thelyphonida). Journal of Arachnology, 1, 55-71.
Santos, A. J., & Pinto-da-Rocha, R. (2009). A new micro-whip scorpion species from Brazilian Amazonia (Arachnida, Schizomida, Hubbardiidae), with the description of a new synapomorphy for Uropygi. Journal of Arachnology, 37, 39-44.
Schwangart, F. (1907). Beiträge zur Morphologie und Systematik der Opilioniden: 1. Über das Integument der Troguloidae. Zoologischer Anzeiger, 31, 161-183.
Seraphim, G., Giupponi, de L. A. P., & de Miranda, G. S. (2019). Taxonomy of the thelyphonid genus Typopeltis Pocock, 1894, including homology proposals for the male gonopod structures (Arachnida, Thelyphonida, Typopeltinae). ZooKeys, 848, 21-39.
Shultz, J. W. (2007). A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society, 150(2), 221-265.
Vincent, J. F. (2002). Arthropod cuticle: A natural composite shell system. Composites Part A: Applied Science and Manufacturing, 33(10), 1311-1315.
Weygoldt, P., & Paulus, H. F. (1979). Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata I+II. Journal of zoological systematics and evolutionary reserach, 17(2), 177-200. https://doi.org/10.1111/j.1439-0469.1979.tb00699.x
Wolff, J. O., García-Hernández, S., & Gorb, S. N. (2016). Adhesive secretions in harvestmen (Arachnida: Opiliones). In A. Smith (Ed.), Biological adhesives (pp. 281-301). Springer.
Wolff, J. O., & Gorb, S. N. (2016). Attachment structures and adhesive secretions in arachnids. Springer.
Wolff, J. O., Huber, S. J., & Gorb, S. N. (2015). How to stay on mummy's back: Morphological and functional changes of the pretarsus in arachnid postembryonic stages. Arthropod Structure & Development, 44(4), 301-312.
Wolff, J. O., Schwaha, T., Seiter, M., & Gorb, S. N. (2016). Whip spiders (Amblypygi) become water repellent by a colloidal secretion that self assembles into hierarchical microstructures. Zoological Letters, 2(23), 1-10. https://doi.org/10.1186/s40851-016-0059-y
Wolff, J. O., Seiter, M., & Gorb, S. N. (2017). The water-repellent cerotegument of whip-spiders (Arachnida: Amblypygi). Arthropod Structure & Development, 46, 116-129.

Auteurs

Michael Seiter (M)

Department of Evolutionary Biology, Unit Integrative Zoology, University of Vienna, Vienna, Austria.

Thomas Schwaha (T)

Department of Evolutionary Biology, Unit Integrative Zoology, University of Vienna, Vienna, Austria.

Rodrigo L Ferreira (RL)

Setor de Biodiversidade Subterrânea, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil.

Lorenzo Prendini (L)

Arachnology Lab, Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA.

Jonas O Wolff (JO)

Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH