Determination of Isomeric Glycan Structures by Permethylation and Liquid Chromatography-Mass Spectrometry (LC-MS).
Carbohydrate Conformation
Chromatography, Liquid
Glycomics
Glycoproteins
/ analysis
Glycoside Hydrolases
/ metabolism
Glycosylation
Graphite
/ chemistry
Isomerism
Methylation
Polysaccharides
/ analysis
Porosity
Protein Processing, Post-Translational
Research Design
Spectrometry, Mass, Electrospray Ionization
Tandem Mass Spectrometry
Workflow
Glycomics
Isomeric separation
LC-MS
Permethylation
Porous graphitized carbon
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
28
4
2021
pubmed:
29
4
2021
medline:
24
6
2021
Statut:
ppublish
Résumé
The existence of glycans in isomeric forms is responsible for the multifariousness of their properties and biological functions. Their altered expression has been associated with various diseases and cancers. Analysis of native glycans is not very sensitive due to the low ionization efficiency of glycans. These facts necessitate their comprehensive structural studies and establishes a high demand for sensitive and reliable techniques. In this chapter, we discuss the strategies for effective separation and identification of permethylated isomeric glycans. The sample preparation for permethylated glycans derived from model glycoproteins and complex biological samples, analyzed using LC-MS/MS, is delineated. We introduce protein extraction and release of glycans, followed by strategies to purify the released glycans, which are reduced and permethylated to improve ionization efficiency and stabilize sialic acid residues. High-temperature LC-based separation on PGC (porous graphitized carbon) column is conducive to isomeric separation of glycans and allows their sensitive identification and quantification using MS/MS.
Identifiants
pubmed: 33908015
doi: 10.1007/978-1-0716-1241-5_20
doi:
Substances chimiques
Glycoproteins
0
Polysaccharides
0
Graphite
7782-42-5
Glycoside Hydrolases
EC 3.2.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
281-301Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM112490
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM130091
Pays : United States
Références
Xu C, Ng DTW (2015) Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 16:742
doi: 10.1038/nrm4073
Varki A, Gagneux P (2015) Biological functions of glycans. In: Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), pp 77–88
Roth J et al (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30(6):497–506
doi: 10.1007/s10059-010-0159-z
Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245
doi: 10.1002/jps.21504
Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867
doi: 10.1016/j.cell.2006.08.019
Cho BG, Veillon L, Mechref Y (2019) N-glycan profile of cerebrospinal fluids from Alzheimer’s disease patients using liquid chromatography with mass spectrometry. J Proteome Res 18(10):3770–3779. https://doi.org/10.1021/acs.jproteome.9b00504
doi: 10.1021/acs.jproteome.9b00504
pubmed: 31437391
pmcid: 7027932
Back NK et al (1994) An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 199(2):431–438
doi: 10.1006/viro.1994.1141
Christiansen MN et al (2014) Cell surface protein glycosylation in cancer. Proteomics 14(4-5):525–546
doi: 10.1002/pmic.201300387
Peng W et al (2019) Revealing the biological attributes of N-glycan isomers in breast cancer brain metastasis using porous graphitic carbon (PGC) liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Proteome Res 18(10):3731–3740. https://doi.org/10.1021/acs.jproteome.9b00429
doi: 10.1021/acs.jproteome.9b00429
pubmed: 31430160
Alley WR Jr, Novotny MV (2010) Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins. J Proteome Res 9(6):3062–3072
doi: 10.1021/pr901210r
Huang Y et al (2017) LC-MS/MS isomeric profiling of permethylated N-glycans derived from serum haptoglobin of hepatocellular carcinoma (HCC) and cirrhotic patients. Electrophoresis 38(17):2160–2167
doi: 10.1002/elps.201700025
Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4):47R–62R
doi: 10.1093/glycob/cwj066
Colley KJ, Varki A, Kinoshita T (2015) Cellular organization of glycosylation, in essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), pp 41–49
Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426(2):239–257
doi: 10.1016/S0304-4165(98)00127-5
Gaye MM et al (2012) Ion mobility-mass spectrometry analysis of serum N-linked glycans from esophageal adenocarcinoma phenotypes. J Proteome Res 11(12):6102–6110
doi: 10.1021/pr300756e
Hofmann J, Pagel K (2017) Glycan analysis by ion mobility-mass spectrometry. Angew Chem Int Ed 56(29):8342–8349
doi: 10.1002/anie.201701309
Jin C et al (2019) Separation of isomeric O-glycans by ion mobility and liquid chromatography-mass spectrometry. Anal Chem 91(16):10604–10613. https://doi.org/10.1021/acs.analchem.9b01772
doi: 10.1021/acs.analchem.9b01772
pubmed: 31298840
Mechref Y (2011) Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 32(24):3467–3481
doi: 10.1002/elps.201100342
Suzuki S (2013) Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal Sci 29(12):1117–1128
doi: 10.2116/analsci.29.1117
Dong X et al (2018) Advances in mass spectrometry-based glycomics. Electrophoresis 39(24):3063–3081
doi: 10.1002/elps.201800273
Tousi F et al (2013) Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform. Anal Chem 85(17):8421–8428
doi: 10.1021/ac4018007
Wuhrer M, de Boer AR, Deelder AM (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28(2):192–206
doi: 10.1002/mas.20195
Ruhaak LR et al (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481
doi: 10.1007/s00216-010-3532-z
Ashwood C et al (2019) Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. Analyst 144(11):3601–3612
doi: 10.1039/C9AN00486F
Zhou S et al (2017) LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 409(2):453–466
doi: 10.1007/s00216-016-9996-8
Zhou S et al (2017) Isomeric separation of Permethylated Glycans by porous graphitic carbon (PGC)-LC-MS/MS at high temperatures. Anal Chem 89(12):6590–6597
doi: 10.1021/acs.analchem.7b00747
Behan JL, Smith KD (2011) The analysis of glycosylation: a continued need for high pH anion exchange chromatography. Biomed Chromatogr 25(1-2):39–46
doi: 10.1002/bmc.1514
Wuhrer M et al (2006) Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom 20(11):1747–1754
doi: 10.1002/rcm.2509
Zhou S et al (2017) Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst 142(23):4446–4455
doi: 10.1039/C7AN01262D
Bapiro TE, Richards FM, Jodrell DI (2016) Understanding the complexity of porous graphitic carbon (PGC) chromatography: modulation of Mobile-stationary phase interactions overcomes loss of retention and reduces variability. Anal Chem 88(12):6190–6194
doi: 10.1021/acs.analchem.6b01167
Dong X et al (2018) LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder. Electrophoresis 39(24):3096–3103
doi: 10.1002/elps.201800316
Zhu R et al (2018) Enhanced quantitative LC-MS/MS analysis of N-linked Glycans derived from glycoproteins using sodium Deoxycholate detergent. J Proteome Res 17(8):2668–2678
doi: 10.1021/acs.jproteome.8b00127
Rahman SA et al (2014) Filter-aided N-glycan separation (FANGS): a convenient sample preparation method for mass spectrometric N-glycan profiling. J Proteome Res 13(3):1167–1176
doi: 10.1021/pr401043r
Goetz JA, Novotny MV, Mechref Y (2009) Enzymatic/chemical release of O-Glycans allowing MS analysis at high sensitivity. Anal Chem 81(23):9546–9552
doi: 10.1021/ac901363h
Huang YP et al (2002) Matrix-assisted laser desorption/ionization mass spectrometry compatible beta-elimination of O-linked oligosaccharides. Rapid Commun Mass Spectrom 16(12):1199–1204
doi: 10.1002/rcm.701
Desantos-Garcia JL et al (2011) Enhanced sensitivity of LC-MS analysis of permethylated N-glycans through online purification. Electrophoresis 32(24):3516–3525
doi: 10.1002/elps.201100378
Yu CY et al (2013) Automated annotation and quantification of glycans using liquid chromatography-mass spectrometry. Bioinformatics 29(13):1706–1707
doi: 10.1093/bioinformatics/btt190
Veillon L et al (2017) Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38(17):2100–2114
doi: 10.1002/elps.201700042
West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217(19):3201–3216
doi: 10.1016/j.chroma.2009.09.052