[New structures of mTORC1: Focus on Rag GTPases].

Une moisson de nouvelles structures de mTORC1 - Coup de projecteur sur les GTPases Rag.

Journal

Medecine sciences : M/S
ISSN: 1958-5381
Titre abrégé: Med Sci (Paris)
Pays: France
ID NLM: 8710980

Informations de publication

Date de publication:
Apr 2021
Historique:
entrez: 28 4 2021
pubmed: 29 4 2021
medline: 9 11 2021
Statut: ppublish

Résumé

mTORC1 is a central player in cell growth, a process that is tightly regulated by the availability of nutrients and that controls various aspects of metabolism in the normal cell and in severe diseases such as cancers. mTORC1 is a large multiprotein complex, composed of the kinase subunit mTOR, of Ragulator, which attaches mTOR to the lysosome membrane, of the atypical Rag GTPases and the small GTPase RheB, whose nucleotide states directly dictate its localization to the lysosome and its kinase activity, and of RAPTOR, an adaptor that assembles the complex. The activity of the Rag GTPases is further controlled by the GATOR1 and folliculin complexes, which regulate their GTP/GDP conversion. Here, we review recent structures of important components of the mTORC1 machinery, determined by cryo-electron microscopy for the most part, which allow to reconstitute the architecture of active mTORC1 at near atomic resolution. Notably, we discuss how these structures shed new light on the roles of Rag GTPases and their regulators in mTORC1 regulation, and the perspectives that they open towards understanding the inner workings of mTORC1 on the lysosomal membrane. Une moisson de nouvelles structures de mTORC1 - Coup de projecteur sur les GTPases Rag. mTORC1 est un acteur central de la croissance cellulaire, un processus étroitement régulé par la disponibilité de nutriments et qui contrôle diverses étapes du métabolisme dans la cellule normale et au cours de maladies, comme les cancers. mTORC1 est un complexe multiprotéique de grande taille constitué de nombreuses sous-unités, parmi lesquelles deux types de GTPases, Rag et RheB, contrôlent directement sa localisation membranaire et son activité kinase. Dans cette revue, nous faisons le point sur une moisson de structures récentes, déterminées pour la plupart par cryo-microscopie électronique, qui sont en passe de reconstituer le puzzle de l’architecture de mTORC1. Nous discutons ce que ces structures révèlent sur le rôle des GTPases, et ce que leur connaissance ouvre comme perspectives pour comprendre comment mTORC1 fonctionne à la membrane du lysosome.

Autres résumés

Type: Publisher (fre)
Une moisson de nouvelles structures de mTORC1 - Coup de projecteur sur les GTPases Rag.

Identifiants

pubmed: 33908855
doi: 10.1051/medsci/2021033
pii: msc200371
doi:

Substances chimiques

FLCN protein, human 0
Proto-Oncogene Proteins 0
Ras Homolog Enriched in Brain Protein 0
Regulatory-Associated Protein of mTOR 0
Tumor Suppressor Proteins 0
Guanosine Diphosphate 146-91-8
Guanosine Triphosphate 86-01-1
MTOR protein, human EC 2.7.1.1
Mechanistic Target of Rapamycin Complex 1 EC 2.7.11.1
TOR Serine-Threonine Kinases EC 2.7.11.1
GTP Phosphohydrolases EC 3.6.1.-
Monomeric GTP-Binding Proteins EC 3.6.5.2

Types de publication

Journal Article Review

Langues

fre

Sous-ensembles de citation

IM

Pagination

372-378

Informations de copyright

© 2021 médecine/sciences – Inserm.

Références

Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA 2017 ; 114 : 11818–11825.
Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003 ; 11 : 895–904.
Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010 ; 141 : 290–303.
Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002 ; 110 : 163–175.
Nicastro R, Sardu A, Panchaud N, De Virgilio C. The architecture of the Rag GTPase signaling network. Biomolecules 2017 ; 7 : 48.
Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013 ; 93 : 269–309.
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012 ; 150 : 1196–1208.
Bar-Peled L, Chantranupong L, Cherniack AD, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013 ; 340 : 1100–1106.
Tsun ZY, Bar-Peled L, Chantranupong L, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013 ; 52 : 495–505.
Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 2017 ; 552 : 368–373.
Shen K, Huang RK, Brignole EJ, et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 2018 ; 556 : 64–69.
Rogala KB, Gu X, Kedir JF, et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 2019 ; 366 : 468–475.
Shen K, Rogala KB, Chou HT, et al. Cryo-EM Structure of the human FLCN-FNIP2-Rag-Ragulator complex. Cell 2019; 179 : 1319–29e8.
Anandapadamanaban M, Masson GR, Perisic O, et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019 ; 366 : 203–210.
Lawrence RE, Fromm SA, Fu Y, et al. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 2019 ; 366 : 971–977.
Fromm SA, Lawrence RE, Hurley JH. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat Struct Mol Biol 2020; 27 : 1017–20.
Klinger CM, Spang A, Dacks JB, Ettema TJ. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 2016 ; 33 : 1528–1541.
Cherfils J. Encoding Allostery in mTOR Signaling: The Structure of the Rag GTPase/Ragulator Complex. Mol Cell 2017 ; 68 : 823–824.
Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for front-back communication. EMBO Rep 2002 ; 3 : 1035–1041.
Su MY, Morris KL, Kim DJ, et al. Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex. Mol Cell 2017; 68 : 835–46e3.
Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 2018 ; 115 : 9545–9550.
de Araujo MEG, Naschberger A, Furnrohr BG, et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 2017 ; 358 : 377–381.
Shen K, Valenstein ML, Gu X, Sabatini DM. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J Biol Chem 2019 ; 294 : 2970–2975.
Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4–activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 1997 ; 89 : 251–261.
Galicia C, Lhospice S, Varela PF, et al. MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus. Nat Commun 2019 ; 10 : 5300.
Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature 2013 ; 497 : 217–223.
Peurois F, Peyroche G, Cherfils J. Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2019 ; 47 : 13–22.
Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015 ; 84 : 739–764.
Kondo Y, Ognjenovic J, Banerjee S, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019 ; 366 : 109–115.
Das S, Malaby AW, Nawrotek A, et al. Structural organization and dynamics of homodimeric cytohesin family Arf GTPase exchange factors in solution and on membranes. Structure 2019; 27 : 1782–97e7.

Auteurs

Agata Nawrotek (A)

CNRS, LBPA, UMR 8113,École normale supérieure Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, 91190 Gif-sur-Yvette, France.

Jacqueline Cherfils (J)

CNRS, LBPA, UMR 8113,École normale supérieure Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, 91190 Gif-sur-Yvette, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH