Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygen-Coordinated Structure and High-Loadings.

heterogeneous catalysis high loading oxidation phenol single-atom catalysis

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
05 Jul 2021
Historique:
received: 21 02 2021
pubmed: 30 4 2021
medline: 30 4 2021
entrez: 29 4 2021
Statut: ppublish

Résumé

Direct conversion of bulk metal or nanoparticles into metal single atoms under thermal pyrolysis conditions is a highly efficient and promising strategy to fabricate single-atom catalysts (SACs). Usually, nitrogen-doped carbon is used as the anchoring substrate to capture the migrating metal ion species at high temperatures, and stable isolated SACs with nitrogen coordination are formed during the process. Herein, we report unexpected oxygen-coordinated metal single-atom catalysts (Fe-, Co-, Ni-, Mn-SACs) with high loadings (above 10 wt %) through direct transformation of metal oxide nanoparticles (Fe-, Co-, Ni-, Mn-NPs) in an inert atmosphere at 750 °C for 2 h. The atomic dispersion of metal single atoms and their coordinated structures were confirmed by aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structures. In addition, the dynamic process of nanoparticles to atoms was directly observed by in situ transmission electron microscopy. The as-prepared Fe SAC exhibited high activity and superior selectivity for catalytic oxidation of benzene to phenol with hydrogen peroxide.

Identifiants

pubmed: 33913231
doi: 10.1002/anie.202102647
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15248-15253

Subventions

Organisme : National Basic Research Program of China (973 Program)
ID : 2018YFA0703503, 2018YFA0208504
Organisme : Key Programme
ID : 21932006
Organisme : Youth Innovation Promotion Association of the Chinese Academy of Sciences
ID : 2017049

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

 
B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634-641;
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740-1748;
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65-81;
L. Zhang, Y. Ren, W. Liu, A. Wang, T. Zhang, Nat. Rev. Chem. 2018, 5, 653-672;
S. Ding, M. J. Hülsey, J. Pérez-Ramírez, N. Yan, Joule 2019, 3, 2897-2929;
S. K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Pérez-Ramírez, Chem. Rev. 2020, 120, 11810-11899.
 
W. H. Lai, Z. Miao, Y.-X. Wang, J.-Z. Wang, S.-L. Chou, Adv. Energy Mater. 2019, 9, 1900722;
H. Li, M. Wang, L. Luo, J. Zeng, Adv. Sci. 2019, 6, 1801471;
X. Li, L. Liu, X. Ren, J. Gao, Y. Huang, B. Liu, Sci. Adv. 2020, 6, eabb6833;
X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Nano Res. 2020, 13, 1842-1855;
D. Liu, Q. He, S. Ding, L. Song, Adv. Energy Mater. 2020, 10, 2001482;
Y. Pan, C. Zhang, Z. Liu, C. Chen, Y. Li, Matter 2020, 2, 78-110;
K. Qi, M. Chhowalla, D. Voiry, Mater. Today 2020, 40, 173-192;
R. Qin, K. Liu, Q. Wu, N. Zheng, Chem. Rev. 2020, 120, 11810-11899.
 
M. J. Hülsey, J. Zhang, N. Yan, Adv. Mater. 2018, 30, 1802304;
R. Qin, P. Liu, G. Fu, N. Zheng, Small Methods 2018, 2, 1700286;
J. Wang, Z. Li, Y. Wu, Y. Li, Adv. Mater. 2018, 30, 1801649;
A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin, X. Wang, C. Yang, B. Dong, Y. Jia, J. Liu, X. Sun, Small Methods 2019, 3, 1800471;
H. Huang, K. Shen, F. Chen, Y. Li, ACS Catal. 2020, 10, 6579-6586;
S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang, Y. Li, Chem. Rev. 2020, 120, 11900-11955;
J. Wu, L. Xiong, B. Zhao, M. Liu, L. Huang, Small Methods 2020, 4, 1900540.
Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 2018, 1, 781-786.
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797.
J. Jones, H. F. Xiong, A. T. Delariva, E. J. Peterson, H. Pham, S. R. Challa, G. S. Qi, S. Oh, M. H. Wiebenga, X. I. P. Hernandez, Y. Wang, A. K. Datye, Science 2016, 353, 150-154.
 
M. Moliner, J. E. Gabay, C. E. Kliewer, R. T. Carr, J. Guzman, G. L. Casty, P. Serna, A. Corma, J. Am. Chem. Soc. 2016, 138, 15743-15750;
J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li, Y. Wu, Angew. Chem. Int. Ed. 2018, 57, 14095-14100;
Angew. Chem. 2018, 130, 14291-14296;
Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang, Y. Lin, T. Yuan, F. Zhou, Y. Hu, Z. Yang, C. Zhao, J. Wang, C. Zhao, Y. Hu, G. Wu, Q. Zhang, Q. Xu, B. Liu, P. Gao, R. You, W. Huang, L. Zheng, L. Gu, Y. Wu, Y. Li, J. Am. Chem. Soc. 2019, 141, 4505-4509;
Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang, Y. Lin, F. Zhou, H. Wang, Z. Yang, Y. Hu, M. Zhu, X. Zhao, X. Han, C. Wang, Q. Xu, L. Gu, J. Luo, L. Zheng, Y. Wu, Adv. Mater. 2019, 31, 1904496;
P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv, K. Wang, W. Yang, P. Gao, S. Guo, Angew. Chem. Int. Ed. 2019, 58, 14184-14188;
Angew. Chem. 2019, 131, 14322-14326;
A. M. Gänzler, M. Casapu, P. Vernoux, S. Loridant, F. J. Cadete Santos Aires, T. Epicier, B. Betz, R. Hoyer, J.-D. Grunwaldt, Angew. Chem. Int. Ed. 2017, 56, 13078-13082;
Angew. Chem. 2017, 129, 13258-13262;
D. Kunwar, S. Zhou, A. DeLaRiva, E. J. Peterson, H. Xiong, X. I. Pereira-Hernández, S. C. Purdy, R. ter Veen, H. H. Brongersma, J. T. Miller, H. Hashiguchi, L. Kovarik, S. Lin, H. Guo, Y. Wang, A. K. Datye, ACS Catal. 2019, 9, 3978-3990;
K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren, A. F. Lee, Y. Su, X. Pan, J. Zhang, Z. Chen, J. Yang, X. Liu, T. Zhou, W. Xi, J. Luo, C. Zeng, H. Matsumoto, W. Liu, Q. Jiang, K. Wilson, A. Wang, B. Qiao, W. Li, T. Zhang, Nat. Commun. 2020, 11, 1263;
Y. Liu, Y. Ma, Y. Ren, Y. Zhou, W. Liu, W. Baaziz, O. Ersen, C. Pham-Huu, M. Greiner, W. Chu, A. Wang, T. Zhang, Angew. Chem. Int. Ed. 2020, 59, 21613-21619;
Angew. Chem. 2020, 132, 21797-21803;
N. Zhang, X. Zhang, L. Tao, P. Jiang, C. Ye, R. Lin, Z. Huang, A. Li, D. Pang, H. Yan, Y. Wang, P. Xu, S. An, Q. Zhang, L. Liu, S. Du, X. Han, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 6170-6176;
Angew. Chem. 2021, 133, 6235-6241.
S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W.-C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Nat. Nanotechnol. 2018, 13, 856-861.
Z. Yang, B. Chen, W. Chen, Y. Qu, F. Zhou, C. Zhao, Q. Xu, Q. Zhang, X. Duan, Y. Wu, Nat. Commun. 2019, 10, 3734.
 
Y. Pan, Y. Chen, K. Wu, Z. Chen, S. Liu, X. Cao, W.-C. Cheong, T. Meng, J. Luo, L. Zheng, C. Liu, D. Wang, Q. Peng, J. Li, C. Chen, Nat. Commun. 2019, 10, 4290;
H. Jeong, D. Shin, B.-S. Kim, J. Bae, S. Shin, C. Choe, J. W. Han, H. Lee, Angew. Chem. Int. Ed. 2020, 59, 20691-20696;
Angew. Chem. 2020, 132, 20872-20877;
Y. Xu, M. Chu, F. Liu, X. Wang, Y. Liu, M. Cao, J. Gong, J. Luo, H. Lin, Y. Li, Q. Zhang, Nano Lett. 2020, 20, 6865-6872.
 
D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, H. Yang, H. Tian, Y. Hu, P. Du, R. Si, J. Wang, X. Cui, H. Li, J. Xiao, T. Xu, J. Deng, F. Yang, P. N. Duchesne, P. Zhang, J. Zhou, L. Sun, J. Li, X. Pan, X. Bao, Sci. Adv. 2015, 1, e1500462;
W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, J. Am. Chem. Soc. 2017, 139, 10790-10798;
T. Zhang, D. Zhang, X. Han, T. Dong, X. Guo, C. Song, R. Si, W. Liu, Y. Liu, Z. Zhao, J. Am. Chem. Soc. 2018, 140, 16936-16940;
Y. Zhu, W. Sun, J. Luo, W. Chen, T. Cao, L. Zheng, J. Dong, J. Zhang, M. Zhang, Y. Han, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 3861;
T. Zhang, X. Nie, W. Yu, X. Guo, C. Song, R. Si, Y. Liu, Z. Zhao, iScience 2019, 22, 97-108;
H. Zhou, Y. Zhao, J. Gan, J. Xu, Y. Wang, H. Lv, S. Fang, Z. Wang, Z. Deng, X. Wang, P. Liu, W. Guo, B. Mao, H. Wang, T. Yao, X. Hong, S. Wei, X. Duan, J. Luo, Y. Wu, J. Am. Chem. Soc. 2020, 142, 12643-12650.

Auteurs

Jian Liu (J)

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Changyan Cao (C)

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Xiaozhi Liu (X)

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Lirong Zheng (L)

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Xiaohu Yu (X)

Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong, 723000, P. R. China.

Qinghua Zhang (Q)

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Lin Gu (L)

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Ruilian Qi (R)

College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.

Weiguo Song (W)

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Classifications MeSH