ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
08 2021
Historique:
received: 03 03 2020
accepted: 10 03 2021
revised: 02 03 2021
pubmed: 1 5 2021
medline: 8 9 2021
entrez: 30 4 2021
Statut: ppublish

Résumé

Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.

Identifiants

pubmed: 33927411
doi: 10.1038/s41589-021-00785-8
pii: 10.1038/s41589-021-00785-8
pmc: PMC8900659
mid: NIHMS1781729
doi:

Substances chimiques

ABHD17B protein, human EC 3.-
Hydrolases EC 3.-
ras Proteins EC 3.6.5.2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

856-864

Subventions

Organisme : NCI NIH HHS
ID : R01 CA238249
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS073831
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA193994
Pays : United States
Organisme : NCI NIH HHS
ID : R35 CA231991
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA072614
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA072614
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).
pubmed: 17384584 doi: 10.1038/nrc2109
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).
pubmed: 24256730 pmcid: 4274051 doi: 10.1038/nature12796
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701 doi: 10.1038/s41586-019-1694-1
Omerovic, J., Laude, A. J. & Prior, I. A. Ras proteins: paradigms for compartmentalised and isoform-specific signalling. Cell. Mol. Life Sci. 64, 2575–2589 (2007).
pubmed: 17628742 pmcid: 2561238 doi: 10.1007/s00018-007-7133-8
Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21
pubmed: 2208277 doi: 10.1016/0092-8674(90)90294-O
Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).
pubmed: 15705808 doi: 10.1126/science.1105654
Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 6, 449–456 (2010).
pubmed: 20418879 doi: 10.1038/nchembio.362
Hedberg, C. et al. Development of highly potent inhibitors of the Ras-targeting human acyl protein thioesterases based on substrate similarity design. Angew. Chem. Int. Ed. Engl. 50, 9832–9837 (2011).
pubmed: 21905185 doi: 10.1002/anie.201102965
Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2011).
pubmed: 22056678 pmcid: 3248616 doi: 10.1038/nmeth.1769
Duncan, J. A. & Gilman, A. G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J. Biol. Chem. 273, 15830–15837 (1998).
pubmed: 9624183 doi: 10.1074/jbc.273.25.15830
Rusch, M. et al. Identification of acyl protein thioesterases 1 and 2 as the cellular targets of the Ras-signaling modulators palmostatin B and M. Angew. Chem. Int. Ed. Engl. 50, 9838–9842 (2011).
pubmed: 21905186 doi: 10.1002/anie.201102967
Lin, D. T. & Conibear, E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 4, e11306 (2015).
pubmed: 26701913 pmcid: 4755737 doi: 10.7554/eLife.11306
Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009).
pubmed: 19137006 pmcid: 2775068 doi: 10.1038/nmeth.1293
Yokoi, N. et al. Identification of PSD-95 depalmitoylating enzymes. J. Neurosci. 36, 6431–6444 (2016).
pubmed: 27307232 pmcid: 5015780 doi: 10.1523/JNEUROSCI.0419-16.2016
Jia, L. et al. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation. J. Biol. Chem. 289, 6249–6257 (2014).
pubmed: 24385443 pmcid: 3937690 doi: 10.1074/jbc.M113.531475
Won, S. J. & Martin, B. R. Temporal profiling establishes a dynamic S-palmitoylation cycle. ACS Chem. Biol. 13, 1560–1568 (2018).
pubmed: 29733200 pmcid: 6192522 doi: 10.1021/acschembio.8b00157
Zhang, M. M., Tsou, L. K., Charron, G., Raghavan, A. S. & Hang, H. C. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl Acad. Sci. USA 107, 8627–8632 (2010).
pubmed: 20421494 pmcid: 2889305 doi: 10.1073/pnas.0912306107
Cao, Y. et al. ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat. Chem. Biol. 15, 1232–1240 (2019).
pubmed: 31740833 pmcid: 6871660 doi: 10.1038/s41589-019-0399-y
Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011).
pubmed: 21572424 pmcid: 3118922 doi: 10.1038/nchembio.579
Chang, J. W., Nomura, D. K. & Cravatt, B. F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem. Biol. 18, 476–484 (2011).
pubmed: 21513884 pmcid: 3119342 doi: 10.1016/j.chembiol.2011.02.008
Hsu, K. L. et al. DAGLbeta inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8, 999–1007 (2012).
pubmed: 23103940 pmcid: 3513945 doi: 10.1038/nchembio.1105
Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).
pubmed: 24905785 doi: 10.1146/annurev-biochem-060713-035708
Otrubova, K., Chatterjee, S., Ghimire, S., Cravatt, B. F. & Boger, D. L. N-Acyl pyrazoles: effective and tunable inhibitors of serine hydrolases. Bioorg. Med. Chem. 27, 1693–1703 (2019).
pubmed: 30879861 pmcid: 6474344 doi: 10.1016/j.bmc.2019.03.020
Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).
pubmed: 10611275 pmcid: 24710 doi: 10.1073/pnas.96.26.14694
Cognetta, A. B. 3rd et al. Selective N-hydroxyhydantoin carbamate inhibitors of mammalian serine hydrolases. Chem. Biol. 22, 928–937 (2015).
pubmed: 26120000 pmcid: 4527528 doi: 10.1016/j.chembiol.2015.05.018
Zambetti, N. A. et al. Genetic disruption of N-RasG12D palmitoylation perturbs hematopoiesis and prevents myeloid transformation in mice. Blood 135, 1772–1782 (2020).
pubmed: 32219446 pmcid: 7225687 doi: 10.1182/blood.2019003530
Charron, G. et al. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 131, 4967–4975 (2009).
pubmed: 19281244 doi: 10.1021/ja810122f
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).
pubmed: 12203546 doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
Drisdel, R. C. & Green, W. N. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276–285 (2004).
pubmed: 14989092 doi: 10.2144/04362RR02
Zecha, J. et al. Peptide level turnover measurements enable the study of proteoform dynamics. Mol. Cell. Proteomics 17, 974–992 (2018).
pubmed: 29414762 pmcid: 5930408 doi: 10.1074/mcp.RA118.000583
Chen, B. et al. ZDHHC7-mediated S-palmitoylation of scribble regulates cell polarity. Nat. Chem. Biol. 12, 686–693 (2016).
pubmed: 27380321 pmcid: 4990496 doi: 10.1038/nchembio.2119
Kamijo, A., Saitoh, Y., Ohno, N., Ohno, S. & Terada, N. Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine. Histochem. Cell Biol. 145, 81–92 (2016).
pubmed: 26496923 doi: 10.1007/s00418-015-1374-7
Jones, T. L. & Gutkind, J. S. Galpha12 requires acylation for its transforming activity. Biochemistry 37, 3196–3202 (1998).
pubmed: 9485474 doi: 10.1021/bi972253j
Saraceno, C. et al. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death Dis. 5, e1547 (2014).
pubmed: 25429624 pmcid: 4260750 doi: 10.1038/cddis.2014.492
Choi, S. I., Vidal, R., Frangione, B. & Levy, E. Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J. 18, 373–375 (2004).
pubmed: 14656991 doi: 10.1096/fj.03-0730fje
Xu, J. et al. Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood 119, 1032–1035 (2012).
pubmed: 22144181 pmcid: 3271715 doi: 10.1182/blood-2011-06-358960
Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. 19, 817–821 (2014).
pubmed: 24492921 doi: 10.1177/1087057114521867
Ahearn, I. M., Haigis, K., Bar-Sagi, D. & Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 13, 39–51 (2011).
pubmed: 22189424 doi: 10.1038/nrm3255
Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. Nat. Rev. Clin. Oncol. 15, 709–720 (2018).
pubmed: 30275515 doi: 10.1038/s41571-018-0105-0
Cox, A. D., Der, C. J. & Philips, M. R. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res. 21, 1819–1827 (2015).
pubmed: 25878363 pmcid: 4400837 doi: 10.1158/1078-0432.CCR-14-3214
Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).
pubmed: 25323927 pmcid: 4355017 doi: 10.1038/nrd4389
Hernandez, J. L. et al. APT2 inhibition restores scribble localization and S-palmitoylation in Snail-transformed cells. Cell Chem. Biol. 24, 87–97 (2017).
pubmed: 28065656 pmcid: 5362123 doi: 10.1016/j.chembiol.2016.12.007
Vartak, N. et al. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys. J. 106, 93–105 (2014).
pubmed: 24411241 pmcid: 3907232 doi: 10.1016/j.bpj.2013.11.024
Kathayat, R. S. et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat. Commun. 9, 334 (2018).
pubmed: 29362370 pmcid: 5780395 doi: 10.1038/s41467-017-02655-1
Levental, I., Lingwood, D., Grzybek, M., Coskun, U. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010).
pubmed: 21131568 pmcid: 3009825 doi: 10.1073/pnas.1016184107
Chandra, A. et al. The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158 (2011).
pubmed: 22179043 doi: 10.1038/ncb2394
Zhou, M. et al. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. J. Cell Biol. 214, 445–458 (2016).
pubmed: 27502489 pmcid: 4987297 doi: 10.1083/jcb.201604061
Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).
pubmed: 10087920 doi: 10.1016/S0968-0004(98)01336-X
Patricelli, M. P., Giang, D. K., Stamp, L. M. & Burbaum, J. J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).
pubmed: 11990500 doi: 10.1002/1615-9861(200109)1:9<1067::AID-PROT1067>3.0.CO;2-4
Chang, J. W., Cognetta, A. B. 3rd, Niphakis, M. J. & Cravatt, B. F. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem. Biol. 8, 1590–1599 (2013).
pubmed: 23701408 pmcid: 3806897 doi: 10.1021/cb400261h
Hatfield, M. J. et al. Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Br. J. Pharmacol. 160, 1916–1928 (2010).
pubmed: 20649590 pmcid: 2958638 doi: 10.1111/j.1476-5381.2010.00700.x
Inloes, J. M. et al. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc. Natl Acad. Sci. USA 111, 14924–14929 (2014).
pubmed: 25267624 pmcid: 4205627 doi: 10.1073/pnas.1413706111
Xu, T. et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics 129, 16–24 (2015).
pubmed: 26171723 pmcid: 4630125 doi: 10.1016/j.jprot.2015.07.001
Cociorva, D., Tabb, D. L. & Yates, J. R. Validation of tandem mass spectrometry database search results using DTASelect.Curr. Protoc. Bioinformatics Chapter 13, Unit 13.4 (2007).
pubmed: 18428785
Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011).
pubmed: 21828272 pmcid: 3182026 doi: 10.1101/gad.17269211
Burgess, M. R. et al. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Blood 124, 3947–3955 (2014).
pubmed: 25361812 pmcid: 4271180 doi: 10.1182/blood-2014-05-574582
Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019).
pubmed: 31659311 pmcid: 6874898 doi: 10.1038/s41557-019-0351-5
Vinogradova, E. V. et al. An activity-guided map of electrophile–cysteine interactions in primary human T cells. Cell 182, 1009–1026 e29 (2020).
pubmed: 32730809 pmcid: 7775622 doi: 10.1016/j.cell.2020.07.001
Adler, J. & Parmryd, I. Quantifying colocalization by correlation: the pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry A 77, 733–742 (2010).
pubmed: 20653013 doi: 10.1002/cyto.a.20896

Auteurs

Jarrett R Remsberg (JR)

Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.

Radu M Suciu (RM)

Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.

Noemi A Zambetti (NA)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.

Thomas W Hanigan (TW)

Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.

Ari J Firestone (AJ)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.

Anagha Inguva (A)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.

Amanda Long (A)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.

Nhi Ngo (N)

Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA.

Kenneth M Lum (KM)

Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA.

Cassandra L Henry (CL)

Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA.

Stewart K Richardson (SK)

Department of Chemistry, University of Connecticut, Storrs, CT, USA.

Marina Predovic (M)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.

Ben Huang (B)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.

Melissa M Dix (MM)

Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.

Amy R Howell (AR)

Department of Chemistry, University of Connecticut, Storrs, CT, USA.

Micah J Niphakis (MJ)

Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA. MIIP@lundbeck.com.

Kevin Shannon (K)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA. Kevin.Shannon@ucsf.edu.
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. Kevin.Shannon@ucsf.edu.

Benjamin F Cravatt (BF)

Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. cravatt@scripps.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH