Peripheral taste detection in honey bees: What do taste receptors respond to?

Apis mellifera gustation gustatory receptors honey bee

Journal

The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110

Informations de publication

Date de publication:
07 2021
Historique:
revised: 21 04 2021
received: 19 02 2021
accepted: 21 04 2021
pubmed: 3 5 2021
medline: 14 8 2021
entrez: 2 5 2021
Statut: ppublish

Résumé

Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.

Identifiants

pubmed: 33934411
doi: 10.1111/ejn.15265
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

4417-4444

Informations de copyright

© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Références

Abisgold, J. D., & Simpson, S. J. (1988). The effect of dietary protein levels and haemolymph composition on the sensitivity of the maxillary palp chemoreceptors of locusts. Journal of Experimental Biology, 135(1), 215-229. https://doi.org/10.1242/JEB.135.1.215
Adams, C. M., Anderson, M. G., Motto, D. G., Price, M. P., Johnson, W. A., & Welsh, M. J. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. Journal of Cell Biology, 140(1), 143-152. https://doi.org/10.1083/jcb.140.1.143
Afroz, A., Howlett, N., Shukla, A., Ahmad, F., Batista, E., Bedard, K., Payne, S., Morton, B., Mansfield, J. H., & Glendinning, J. I. (2013). Gustatory receptor neurons in Manduca sexta contain a TrpA1-dependent signaling pathway that integrates taste and temperature. Chemical Senses, 38(7), 605-617. https://doi.org/10.1093/chemse/bjt032
Agnihotri, A. R., Roy, A. A., & Joshi, R. S. (2016). Gustatory receptors in Lepidoptera: Chemosensation and beyond. Insect Molecular Biology, 25(5), 519-529. https://doi.org/10.1111/imb.12246
Aguiar, J. M. R. B. V., Roselino, A. C., Sazima, M., & Giurfa, M. (2018). Can honey bees discriminate between floral-fragrance isomers? Journal of Experimental Biology, 221(14), jeb180844. https://doi.org/10.1242/jeb.180844
Ahn, J. E., Chen, Y., & Amrein, H. (2017). Molecular basis of fatty acid taste in Drosophila. eLife, 6, e30115. https://doi.org/10.7554/eLife.30115
Ai, M., Blais, S., Park, J. Y., Min, S., Neubert, T. A., & Suh, G. S. B. (2013). Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. Journal of Neuroscience, 33(26), 10741-10749. https://doi.org/10.1523/JNEUROSCI.5419-12.2013
Alves, G., Sallé, J., Chaudy, S., Dupas, S., & Manière, G. (2014). High-NaCl perception in Drosophila melanogaster. Journal of Neuroscience, 34(33), 10884-10891. https://doi.org/10.1523/JNEUROSCI.4795-13.2014
Arce, A. N., Ramos Rodrigues, A., Yu, J., Colgan, T. J., Wurm, Y., & Gill, R. J. (2018). Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proceedings of the Royal Society of London B: Biological Sciences, 285(1885), 20180655. https://doi.org/10.1098/rspb.2018.0655
Avarguès-Weber, A., de Brito Sanchez, M. G., Giurfa, M., & Dyer, A. G. (2010). Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS ONE, 5(10), e15370. https://doi.org/10.1371/journal.pone.0015370
Avarguès-Weber, A., Deisig, N., & Giurfa, M. (2011). Visual cognition in social insects. Annual Review of Entomology, 56(1), 423-443. https://doi.org/10.1146/annurev-ento-120709-144855
Avarguès-Weber, A., Mota, T., & Giurfa, M. (2012). New vistas on honey bee vision. Apidologie, 43(3), 244-268. https://doi.org/10.1007/s13592-012-0124-2
Ayestaran, A., Giurfa, M., & de Brito Sanchez, M. G. (2010). Toxic but drank: Gustatory aversive compounds induce post-ingestional malaise in harnessed honeybees. PLoS ONE, 5(10), e15000. https://doi.org/10.1371/journal.pone.0015000
Bachman, W. W., & Waller, G. (1977). Honeybee responses to sugar solutions of different compositions. Journal of Apicultural Research, 16(4), 165-169. https://doi.org/10.1080/00218839.1977.11099882
Baracchi, D., Cabirol, A., Devaud, J. M., Haase, A., d’Ettorre, P., & Giurfa, M. (2020). Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Communications Biology, 3(1), 1-9. https://doi.org/10.1038/s42003-020-01183-x
Baracchi, D., Devaud, J. M., D’Ettorre, P., & Giurfa, M. (2017). Pheromones modulate reward responsiveness and non-associative learning in honey bees. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-10113-7
Behrends, A., & Scheiner, R. (2010). Learning at old age: A study on winter bees. Frontiers in Behavioral Neuroscience, 4, 15. https://doi.org/10.3389/fnbeh.2010.00015
Ben-Shahar, Y. (2011). Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Advances in Genetics, 76, 1-26. https://doi.org/10.1016/B978-0-12-386481-9.00001-8
Benton, R., Sachse, S., Michnick, S. W., & Vosshall, L. B. (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biology, 4(2), 240-257. https://doi.org/10.1371/journal.pbio.0040020
Benton, R., Vannice, K. S., Gomez-Diaz, C., & Vosshall, L. B. (2009). Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell, 136(1), 149-162. https://doi.org/10.1016/j.cell.2008.12.001
Bertazzini, M., Medrzycki, P., Bortolotti, L., Maistrello, L., & Forlani, G. (2010). Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids, 39(1), 315-318. https://doi.org/10.1007/s00726-010-0474-x
Bhagavan, S., & Smith, B. H. (1997). Olfactory conditioning in the honey bee, Apis mellifera: Effects of odor intensity. Physiology and Behavior, 61(1), 107-117. https://doi.org/10.1016/S0031-9384(96)00357-5
Bitterman, M. E., Menzel, R., Fietz, A., & Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, 97(2), 107-119. https://doi.org/10.1037/0735-7036.97.2.107
Boeckh, J. (1962). Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengräbers (Necrophorus, Coleoptera). Zeitschrift Für Vergleichende Physiologie, 46(2), 212-248. https://doi.org/10.1007/BF00341551
Boeckh, J., Kaissling, K. E., & Schneider, D. (1965). Insect olfactory receptors. Cold Spring Harbor Symposia on Quantitative Biology, 30, 263-280. https://doi.org/10.1101/SQB.1965.030.01.028
Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (1996). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London B: Biological Sciences, 263(1376), 1565-1569. https://doi.org/10.1098/rspb.1996.0229
Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C., Zhang, P., Huang, Z., Berger, S. L., Reinberg, D., Wang, J., & Liebig, J. (2010). Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 329(5995), 1068-1071. https://doi.org/10.1126/science.1192428
Bonoan, R. E., Tai, T. M., Tagle Rodriguez, M., Feller, L., Daddario, S. R., Czja, R. A., … Straks, P. T. (2017). Seasonality of salt foraging in honey bees (Apis mellifera). Ecological Entomology, 42(2), 195-201. https://doi.org/10.1111/een.12375
Brown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: A global perspective. Apidologie, 40(3), 410-416. https://doi.org/10.1051/apido/2009019
Burden, C. M., Morgan, M. O., Hladun, K. R., Amdam, G. V., Trumble, J. J., & Smith, B. H. (2019). Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-40396-x
Butler, C. G. (1940). The choice of drinking water by the honeybee. Journal of Experimental Biology, 17(3), 253-261. https://doi.org/10.1242/jeb.17.3.253
Cameron, P., Hiroi, M., Ngai, J., & Scott, K. (2010). The molecular basis for water taste in Drosophila. Nature, 465(7294), 91-95. https://doi.org/10.1038/nature09011
Carcaud, J., Giurfa, M., & Sandoz, J. C. (2015). Differential combinatorial coding of pheromones in two olfactory subsystems of the honey bee brain. Journal of Neuroscience, 35(10), 4157-4167. https://doi.org/10.1523/JNEUROSCI.0734-14.2015
Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D. A., Hummler, E., Ryba, N. J. P., & Zuker, C. S. (2010). The cells and peripheral representation of sodium taste in mice. Nature, 464(7286), 297-301. https://doi.org/10.1038/nature08783
Chen, Y., & Amrein, H. (2014). Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses. Current Biology, 24(17), 1969-1977. https://doi.org/10.1016/j.cub.2014.07.069
Chen, Y., & Amrein, H. (2017). Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Current Biology, 27(18), 2741-2750.e4. https://doi.org/10.1016/j.cub.2017.08.003
Chen, Z., Wang, Q., & Wang, Z. (2010). The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. Journal of Neuroscience, 30(18), 6247-6252. https://doi.org/10.1523/JNEUROSCI.0627-10.2010
Claudianos, C., Lim, J., Young, M., Yan, S., Cristino, A. S., Newcomb, R. D., Gunasekaran, N., & Reinhard, J. (2014). Odor memories regulate olfactory receptor expression in the sensory periphery. European Journal of Neuroscience, 39(10), 1642-1654. https://doi.org/10.1111/ejn.12539
Clyne, P. J., Warr, C. G., & Carlson, J. R. (2000). Candidate taste receptors in Drosophila. Science, 287(5459), 1830-1834. https://doi.org/10.1126/science.287.5459.1830
Cook, S. M., Awmack, C. S., Murray, D. A., & Williams, I. H. (2003). Are honey bees' foraging preferences affected by pollen amino acid composition? Ecological Entomology, 28(5), 622-627. https://doi.org/10.1046/j.1365-2311.2003.00548.x
Cook, S. M., Sandoz, J.-C., Martin, A. P., Murray, D. A., Poppy, G. M., & Williams, I. H. (2005). Could learning of pollen odours by honey bees (Apis mellifera) play a role in their foraging behaviour? Physiological Entomology, 30(2), 164-174. https://doi.org/10.1111/j.1365-3032.2005.00445.x
Croset, V., Rytz, R., Cummins, S. F., Budd, A., Brawand, D., Kaessmann, H., Gibson, T. J., & Benton, R. (2010). Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genetics, 6(8), e1001064. https://doi.org/10.1371/journal.pgen.1001064
Croset V., Schleyer M., Arguello J. R., Gerber B., & Benton R. (2016). A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Scientific Reports, 6(1), 34871. https://doi.org/10.1038/srep34871
Dahanukar, A., Lei, Y. T., Kwon, J. Y., & Carlson, J. R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron, 56(3), 503-516. https://doi.org/10.1016/j.neuron.2007.10.024
de Brito Sanchez, G., & Giurfa, M. (2011). A comparative analysis of neural taste processing in animals. Philosophical Transactions of the Royal Society London B: Biological Sciences, 366(1574), 2171-2180. https://doi.org/10.1098/rstb.2010.0327
de Brito Sanchez, M. G. (2011). Taste perception in honey bees. Chemical Senses, 36(8), 675-692. https://doi.org/10.1093/chemse/bjr040
de Brito Sanchez, M. G., Giurfa, M., de Paula Mota, T. R., & Gauthier, M. (2005). Electrophysiological and behavioural characterization of gustatory responses to antennal ‘bitter’ taste in honeybees. European Journal of Neuroscience, 22(12), 3161-3170. https://doi.org/10.1111/j.1460-9568.2005.04516.x
de Brito Sanchez, M. G., Lorenzo, E., Su, S., Liu, F., Zhan, Y., & Giurfa, M. (2014). The tarsal taste of honey bees: Behavioral and electrophysiological analyses. Frontiers in Behavioral Neuroscience, 8, 25. https://doi.org/10.3389/fnbeh.2014.00025
de Brito Sanchez, M. G., Serre, M., Avarguès-Weber, A., Dyer, A. G., & Giurfa, M. (2015). Learning context modulates aversive taste strength in honey bees. Journal of Experimental Biology, 218(6), 949-959. https://doi.org/10.1242/jeb.117333
de Groot, A. P. (1952). Amino acid requirements for growth of the honeybee (Apis mellifica L.). Experientia, 8(5), 192-194. https://doi.org/10.1007/BF02173740
Değirmenci, L., Geiger, D., Rogé Ferreira, F. L., Keller, A., Krischke, B., Beye, M., Steffan-Dewenter, I., & Scheiner, R. (2020). CRISPR/Cas9 mediated mutations as a new tool for studying taste in honeybees. Chemical Senses, 45(8), 655-666. https://doi.org/10.1093/chemse/bjaa063
Değirmenci, L., Thamm, M., & Scheiner, R. (2018). Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera). Journal of Insect Physiology, 106, 65-70. https://doi.org/10.1016/j.jinsphys.2017.09.009
DeSimone, J. A., Lyall, V., Heck, G. L., & Feldman, G. M. (2001). Acid detection by taste receptor cells. Respiration Physiology, 129(1-2), 231-245. https://doi.org/10.1016/S0034-5687(01)00293-6
Desmedt, L., Hotier, L., Giurfa, M., Velarde, R., & de Brito Sanchez, M. G. (2016). Absence of food alternatives promotes risk-prone feeding of unpalatable substances in honey bees. Scientific Reports, 6(1), 1-11. https://doi.org/10.1038/srep31809
Drescher, N., Klein, A.-M., Schmitt, T., & Leonhardt, S. D. (2019). A clue on bee glue: New insight into the sources and factors driving resin intake in honeybees (Apis mellifera). PLoS ONE, 14(2), e0210594. https://doi.org/10.1371/journal.pone.0210594
Dunipace, L., Meister, S., McNealy, C., & Amrein, H. (2001). Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Current Biology, 11(11), 822-835. https://doi.org/10.1016/S0960-9822(01)00258-5
Dweck, H. K. M., & Carlson, J. R. (2020). Molecular logic and evolution of bitter taste in Drosophila. Current Biology, 30(1), 17-30. https://doi.org/10.1016/j.cub.2019.11.005
Enjin, A., Zaharieva, E. E., Frank, D. D., Mansourian, S., Suh, G. S. B., Gallio, M., & Stensmyr, M. C. (2016). Humidity sensing in Drosophila. Current Biology, 26(10), 1352-1358. https://doi.org/10.1016/j.cub.2016.03.049
Esslen, J., & Kaissling, K. E. (1976). Number and distribution of the sensilla on the antennal flagellum of the honeybee (Apis mellifera L.). Zoomorphologie, 83(3), 227-251. https://doi.org/10.1007/BF00993511
French, A., Agha, M. A., Mitra, A., Yanagawa, A., Sellier, M. J., & Marion-Poll, F. (2015). Drosophila bitter taste(s). Frontiers in Integrative Neuroscience, 9, 58. https://doi.org/10.3389/fnint.2015.00058
Fujii, S., Yavuz, A., Slone, J., Jagge, C., Song, X., & Amrein, H. (2015). Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Current Biology, 25(5), 621-627. https://doi.org/10.1016/j.cub.2014.12.058
Gage, S. L., Calle, S., Jacobson, N., Carroll, M., & DeGrandi-Hoffman, G. (2020). Pollen alters amino acid levels in the honey bee brain and this relationship changes with age and parasitic stress. Frontiers in Neuroscience, 14, 231. https://doi.org/10.3389/fnins.2020.00231
Ganguly, A., Pang, L., Duong, V. K., Lee, A., Schoniger, H., Varady, E., & Dahanukar, A. (2017). A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Reports, 18(3), 737-750. https://doi.org/10.1016/j.celrep.2016.12.071
Getz, W. M., & Smith, K. B. (1987). Olfactory sensitivity and discrimination of mixtures in the honeybee Apis mellifera. Journal of Comparative Physiology A, 160(2), 239-245. https://doi.org/10.1007/BF00609729
Giurfa, M., & Malun, D. (2004). Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learning and Memory, 11(3), 294-302. https://doi.org/10.1101/lm.63604
Giurfa, M., & Sandoz, J. C. (2012). Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning and Memory, 19(2), 54-66. https://doi.org/10.1101/lm.024711.111
Glavinic, U., Stankovic, B., Draskovic, V., Stevanovic, J., Petrovic, T., Lakic, N., & Stanimirovic, Z. (2017). Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS ONE, 12(11), e0187726. https://doi.org/10.1371/journal.pone.0187726
Goulson, D. (2013). Review: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987. https://doi.org/10.1111/1365-2664.12111
Goulson, D., Lye, G. C., & Darvill, B. (2008). Decline and conservation of bumble bees. Annual Review of Entomology, 53(1), 191-208. https://doi.org/10.1146/annurev.ento.53.103106.093454
Goulson, D., Nicholls, E., Botias, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), https://doi.org/10.1126/science.1255957
Grant, J. (2012). Tachykinins stimulate a subset of mouse taste cells. PLoS ONE, 7(2), e31697. https://doi.org/10.1371/journal.pone.0031697
Guiraud, M., Hotier, L., Giurfa, M., & de Brito Sanchez, M. G. (2018). Aversive gustatory learning and perception in honey bees. Scientific Reports, 8(1), 1-13. https://doi.org/10.1038/s41598-018-19715-1
Guo, X., Wang, Y., Sinakevitch, I., Lei, H., & Smith, B. H. (2018). Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. Journal of Insect Physiology, 111, 47-52. https://doi.org/10.1016/j.jinsphys.2018.10.005
Hagler, J. R., & Buchmann, S. L. (1993). Honey bee (Hymenoptera: Apidae) foraging responses to phenolic-rich nectars. Journal of the Kansas Entomological Society, 66(2), 223-230.
Hansson, B. S., Hallberg, E., Löfstedt, C., & Steinbrecht, R. A. (1994). Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in male Ostrinia nubilalis (Lepidoptera: Pyralidae). Tissue and Cell, 26(4), 503-512. https://doi.org/10.1016/0040-8166(94)90003-5
Harborne, J. B. (1994). Introduction to Ecological Biochemistry (4th ed., pp. 1-384). Academic Press.
Harris, J. W., & Woodring, J. (1992). Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. Journal of Insect Physiology, 38(1), 29-35. https://doi.org/10.1016/0022-1910(92)90019-A
Haupt, S. S. (2004). Antennal sucrose perception in the honey bee (Apis mellifera L.): Behaviour and electrophysiology. Journal of Comparative Physiology A, 190(9), 735-745. https://doi.org/10.1007/s00359-004-0532-5
Hill C. A., Fox A. N., Pitts R. J., Kent L. B., Tan P. L., Chrystal M. A., & Zwiebel L. J. (2002). G Protein-Coupled Receptors in Anopheles gambiae. Science, 298(5591), 176-178. https://doi.org/10.1126/science.1076196
Hiroi, M., Marion-Poll, F., & Tanimura, T. (2002). Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoological Science, 19(9), 1009-1018. https://doi.org/10.2108/zsj.19.1009
Hiroi, M., Meunier, N., Marion-Poll, F., & Tanimura, T. (2004). Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. Journal of Neurobiology, 61(3), 333-342. https://doi.org/10.1002/neu.20063
Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931-949. https://doi.org/10.1038/nature05260
Inagaki, H. K., Panse, K. M., & Anderson, D. J. (2014). Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4), 806-820. https://doi.org/10.1016/j.neuron.2014.09.032
Jaeger, A. H., Stanley, M., Weiss, Z. F., Musso, P. Y., Chan, R. C. W., Zhang, H., … Gordon, M. D. (2018). A complex peripheral code for salt taste in Drosophila. eLife, 7, e37167. https://doi.org/10.7554/eLife.37167
Jiao, Y., Moon, S. J., Wang, X., Ren, Q., & Montell, C. (2008). Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Current Biology, 18(22), 1797-1801. https://doi.org/10.1016/j.cub.2008.10.009
Jin, H., Fishman, Z. H., Ye, M., Wang, L., & Zuker, C. S. (2021). Top-down control of sweet and bitter taste in the mammalian brain. Cell, 184(1), 257-271. https://doi.org/10.1016/j.cell.2020.12.014
Johnson, S. D., Hargreaves, A. L., & Brown, M. (2006). Dark, bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology, 87(11), 2709-2716. https://doi.org/10.1890/0012-9658(2006)87%5B2709:DBNFAA%5D2.0.CO;2
Jørgensen, K., Almaas, T. J., Marion-Poll, F., & Mustaparta, H. (2007). Electrophysiological characterization of responses from gustatory receptor neurons of sensilla chaetica in the moth Heliothis virescens. Chemical Senses, 32(9), 863-879. https://doi.org/10.1093/chemse/bjm057
Junca, P., Garnery, L., & Sandoz, J. C. (2019). Genotypic trade-off between appetitive and aversive capacities in honeybees. Scientific Reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-46482-4
Junca, P., & Sandoz, J.-C. (2015). Heat perception and aversive learning in honey bees: Putative involvement of the thermal/chemical sensor AmHsTRPA. Frontiers in Physiology, 6, 316. https://doi.org/10.3389/fphys.2015.00316
Jung, J. W., Park, K. W., Ahn, Y. J., & Kwon, H. W. (2015). Functional characterization of sugar receptors in the western honeybee, Apis mellifera. Journal of Asia-Pacific Entomology, 18(1), 19-26. https://doi.org/10.1016/j.aspen.2014.10.011
Kaissling, K.-E. (1987). In K. Colbow (Ed.), R. H. Wright Lectures on Insect Olfaction (pp. 1-190). Burnaby, B.C. Simon Fraser University.
Kaissling, K. E., Meng, L. Z., & Bestmann, H. J. (1989). Responses of bombykol receptor cells to (Z, E)-4,6-hexadecadiene and linalool. Journal of Comparative Physiology A, 165(2), 147-154. https://doi.org/10.1007/BF00619189
Kaissling, K.-E., & Thorson, J. (1980). Insect olfactory sensilla: Structural, chemical and electrical aspects of the functional organisation. In D. B. Sattelle L. M. Hall & J. G. Hildebrand (Eds.), Receptors for Neurotransmitters, Hormones and Pheromones in Insects (pp. 261-282). Amsterdam: Elsevier/North-Holland Biomedical Press.
Kang, K., Panzano, V. C., Chang, E. C., Ni, L., Dainis, A. M., Jenkins, A. M., … Garrity, P. A. (2012). Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature, 481(7379), 76-81. https://doi.org/10.1038/nature10715
Kellenberger, S., & Schild, L. (2002). Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiological Reviews, 82(3), 735-767. https://doi.org/10.1152/physrev.00007.2002
Kessler, S. C., Tiedeken, E. J., Simcock, K. L., Derveau, S., Mitchell, J., Softley, S., … Wright, G. A. (2015). Bees prefer foods containing neonicotinoid pesticides. Nature, 521(7550), 74-76. https://doi.org/10.1038/nature14414
Kim, S. H., Lee, Y., Akitake, B., Woodward, O. M., Guggino, W. B., & Montell, C. (2010). Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8440-8445. https://doi.org/10.1073/pnas.1001425107
Kim, Y. S., & Smith, B. H. (2000). Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. Journal of Insect Physiology, 46(5), 793-801. https://doi.org/10.1016/S0022-1910(99)00168-7
Knecht, Z. A., Silbering, A. F., Cruz, J., Yang, L., Croset, V., Benton, R., & Garrity, P. A. (2017). Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife, 6, e26654. https://doi.org/10.7554/eLife.26654
Koh, T. W., He, Z., Gorur-Shandilya, S., Menuz, K., Larter, N. K., Stewart, S., & Carlson, J. R. (2014). The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron, 83(4), 850-865. https://doi.org/10.1016/j.neuron.2014.07.012
Kohno, K., Sokabe, T., Tominaga, M., & Kadowaki, T. (2010). Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. Journal of Neuroscience, 30(37), 12219-12229. https://doi.org/10.1523/JNEUROSCI.2001-10.2010
Kropf, J., Kelber, C., Bieringer, K., & Rössler, W. (2014). Olfactory subsystems in the honeybee: Sensory supply and sex specificity. Cell and Tissue Research, 357(3), 583-595. https://doi.org/10.1007/s00441-014-1892-y
Kühnholz, S., & Seeley, T. D. (1997). The control of water collection in honey bee colonies. Behavioral Ecology and Sociobiology, 41(6), 407-422. https://doi.org/10.1007/s002650050402
Kwon, Y., Shim, H. S., Wang, X., & Montell, C. (2008). Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nature Neuroscience, 11(8), 871-873. https://doi.org/10.1038/nn.2170
Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., & Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43(5), 703-714. https://doi.org/10.1016/j.neuron.2004.08.019
Lau, P. W., & Nieh, J. C. (2016). Salt preferences of honey bee water foragers. Journal of Experimental Biology, 219(6), 790-796. https://doi.org/10.1242/jeb.132019
Lee, M. J., Sung, H. Y., Jo, H., Kim, H. W., Choi, M. S., Kwon, J. Y., & Kang, K. J. (2017). Ionotropic receptor 76b is required for gustatory aversion to excessive Na+ in Drosophila. Molecules and Cells, 40(10), 787-795. https://doi.org/10.14348/molcells.2017.0160
Lee, Y., Moon, S. J., & Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4495-4500. https://doi.org/10.1073/pnas.0811744106
Leung, N. Y., & Montell, C. (2017). Unconventional roles of opsins. Annual Review of Cell and Developmental Biology, 33(1), 241-264. https://doi.org/10.1146/annurev-cellbio-100616-060432
Leung, N. Y., Thakur, D. P., Gurav, A. S., Kim, S. H., Pizio, A. D., Niv, M. Y., … Niv, M. Y. (2020). Functions of opsins in Drosophila taste. Current Biology, 30(8), 1376-1379. https://doi.org/10.1016/j.cub.2020.01.068
Li, Q., DeBeaubien, N. A., Sokabe, T., & Montell, C. (2020). Temperature and sweet taste integration in Drosophila. Current Biology, 30(11), 2051-2067.e5. https://doi.org/10.1016/j.cub.2020.03.066
Liao, C., Xu, Y., Sun, Y., Lehnert, M. S., Xiang, W., Wu, J., & Wu, Z. (2020). Feeding behavior of honey bees on dry sugar. Journal of Insect Physiology, 124, 104059. https://doi.org/10.1016/j.jinsphys.2020.104059
Liao, L. H., Wu, W. Y., & Berenbaum, M. R. (2017). Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/s41598-017-15066-5
Lim, S., Jung, J., Yunusbaev, U., Ilyasov, R., & Kwon, H. W. (2019). Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-46738-z
Liman, E. R., Zhang, Y. V., & Montell, C. (2014). Peripheral coding of taste. Neuron, 81(5), 984-1000. https://doi.org/10.1016/j.neuron.2014.02.022
Lin Liu, F., Jun Fu, W., Rong Yang, D. A., Peng, Y. Q., Zhang, X. W., & He, J. Z. (2004). Reinforcement of bee-plant interaction by phenolics in food. Journal of Apicultural Research, 43(4), 155-157. https://doi.org/10.1080/00218839.2004.11101128
Ling, F., Dahanukar, A., Weiss, L. A., Kwon, J. Y., & Carlson, J. R. (2014). The molecular and cellular basis of taste coding in the legs of Drosophila. Journal of Neuroscience, 34(21), 7148-7164. https://doi.org/10.1523/JNEUROSCI.0649-14.2014
Liscia, A., & Solari, P. (2000). Bitter taste recognition in the blowfly: Electrophysiological and behavioral evidence. Physiology and Behavior, 70(1-2), 61-65. https://doi.org/10.1016/S0031-9384(00)00249-3
Liu, L., Leonard, A. S., Motto, D. G., Feller, M. A., Price, M. P., Johnson, W. A., & Welsh, M. J. (2003). Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron, 39(1), 133-146. https://doi.org/10.1016/S0896-6273(03)00394-5
Louw, G. N., & Hadley, N. F. (1985). Water economy of the honeybee: A stoichiometric accounting. Journal of Experimental Zoology, 235(1), 147-150. https://doi.org/10.1002/jez.1402350118
Magadum, S., Banerjee, U., Murugan, P., Gangapur, D., & Ravikesavan, R. (2013). Gene duplication as a major force in evolution. Journal of Genetics, 92(1), 155-161. https://doi.org/10.1007/s12041-013-0212-8
Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M., & Kadowaki, T. (2009). Evolutionary conservation and changes in insect TRP channels. BMC Evolutionary Biology, 9(1), 228. https://doi.org/10.1186/1471-2148-9-228
Mattila, H. R., Otis, G. W., Nguyen, L. T. P., Pham, H. D., Knight, O. M., & Phan, N. T. (2020). Honey bees (Apis cerana) use animal feces as a tool to defend colonies against group attack by giant hornets (Vespa soror). PLoS ONE, 15(12), e0242668. https://doi.org/10.1371/journal.pone.0242668
Mercer, A. R., & Menzel, R. (1982). Effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. Journal of Comparative Physiology, 145(3), 363-368. https://doi.org/10.1007/BF00619340
Meunier, N., Ferveur, J. F., & Marion-Poll, F. (2000). Sex-specific non-pheromonal taste receptors in Drosophila. Current Biology, 10(24), 1583-1586. https://doi.org/10.1016/S0960-9822(00)00860-5
Meunier, N., Marion-Poll, F., Rospars, J.-P., & Tanimura, T. (2003). Peripheral coding of bitter taste in Drosophila. Journal of Neurobiology, 56(2), 139-152. https://doi.org/10.1002/neu.10235
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, 2010 (pp. 1-8). https://doi.org/10.1109/GCE.2010.5676129
Miriyala, A., Kessler, S., Rind, F. C., & Wright, G. A. (2018). Burst firing in bee gustatory neurons prevents adaptation. Current Biology, 28(10), 1585-1594.e3. https://doi.org/10.1016/j.cub.2018.03.070
Mitchell, B. K., Itagaki, H., & Rivet, M. (1999). Peripheral and central structures involved in insect gustation. Microscopy Research and Technique, 47(6), 401-415. https://doi.org/10.1002/(SICI)1097-0029(19991215)47:6<401:AID-JEMT4>3.0.CO;2-7
Miyamoto, T., & Amrein, H. (2014). Diverse roles for the Drosophila fructose sensor Gr43a. Fly, 8(1), 19-25. https://doi.org/10.4161/fly.27241
Miyamoto, T., Chen, Y., Slone, J., & Amrein, H. (2013). Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons. PLoS ONE, 8(2), e56304. https://doi.org/10.1371/journal.pone.0056304
Miyamoto, T., Slone, J., Song, X., & Amrein, H. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 151(5), 1113-1125. https://doi.org/10.1016/j.cell.2012.10.024
Mustard, J. A., Dews, L., Brugato, A., Dey, K., & Wright, G. A. (2012). Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee. Behavioural Brain Research, 232(1), 217-224. https://doi.org/10.1016/j.bbr.2012.04.014
Muth, F., Gaxiola, R. L., & Leonard, A. S. (2020). No evidence for neonicotinoid preferences in the bumblebee Bombus impatiens. Royal Society Open Science, 7(5), 191883. https://doi.org/10.1098/rsos.191883
Nayak, S. V., & Singh, R. N. (1983). Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster meigen (Diptera: Drosophilidae). International Journal of Insect Morphology and Embryology, 12(5-6), 273-291. https://doi.org/10.1016/0020-7322(83)90023-5
Negri, I., Mavris, C., Di Prisco, G., Caprio, E., & Pellecchia, M. (2015). Honey bees (Apis mellifera, L.) as active samplers of airborne particulate matter. PLoS ONE, 10(7), e0132491. https://doi.org/10.1371/journal.pone.0132491
Ni, L., Klein, M., Svec, K. V., Budelli, G., Chang, E. C., Ferrer, A. J., … Garrity, P. A. (2016). The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife, 5, e13254. https://doi.org/10.7554/eLife.13254
Nicolson, S. W. (2009). Water homeostasis in bees, with the emphasis on sociality. Journal of Experimental Biology, 212(3), 429-434. https://doi.org/10.1242/jeb.022343
Oka, Y., Butnaru, M., Von Buchholtz, L., Ryba, N. J. P., & Zuker, C. S. (2013). High salt recruits aversive taste pathways. Nature, 494(7438), 472-475. https://doi.org/10.1038/nature11905
Oldroyd, B. P. (2007). What's killing American honey bees? PLoS Biology, 5(6), 1195-1199. https://doi.org/10.1371/journal.pbio.0050168
Olsson, S. B., & Hansson, B. S. (2013). Electroantennogram and single sensillum recording in insect antennae. Methods in Molecular Biology, 1068, 157-177. https://doi.org/10.1007/978-1-62703-619-1_11
Paerhati, Y., Ishiguro, S., Ueda-Matsuo, R., Yang, P., Yamashita, T., Ito, K., Maekawa, H., Tani, H., & Suzuki, K. (2015). Expression of AmGR10 of the gustatory receptor family in honey bee is correlated with nursing behavior. PLoS ONE, 10(11), e0142917. https://doi.org/10.1371/journal.pone.0142917
Page, R. E., & Erber, J. (2002). Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften, 89(3), 91-106. https://doi.org/10.1007/s00114-002-0299-x
Pankiw, T., & Page, R. E. (1999). The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 185(2), 207-213. https://doi.org/10.1007/s003590050379
Pankiw, T., Waddington, K. D., & Page, R. E. (2001). Modulation of sucrose response thresholds in honey bees (Apis mellifera L.): Influence of genotype, feeding, and foraging experience. Journal of Comparative Physiology A, 187(4), 293-301. https://doi.org/10.1007/s003590100201
Paoli, M., & Galizia, G. C. (2021). Olfactory coding in honeybees. Cell and Tissue Research, 1-24. https://doi.org/10.1007/s00441-020-03385-5
Paoli, P. P., Donley, D., Stabler, D., Saseendranath, A., Nicolson, S. W., Simpson, S. J., & Wright, G. A. (2014). Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids, 46(6), 1449-1458. https://doi.org/10.1007/s00726-014-1706-2
Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., McField, M., Morrissey, C. A., Noome, D. A., Settele, J., Simon-Delso, N., Stark, J. D., Van der Sluijs, J. P., Van Dyck, H., & Wiemers, M. (2014). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22(1), 68-102. https://doi.org/10.1007/s11356-014-3471-x
Pophof, B. (2002). Octopamine enhances moth olfactory responses to pheromones, but not those to general odorants. Journal of Comparative Physiology A, 188(8), 659-662. https://doi.org/10.1007/s00359-002-0343-5
Rimal, S., & Lee, Y. (2018). The multidimensional ionotropic receptors of Drosophila melanogaster. Insect Molecular Biology, 27(1), 1-7. https://doi.org/10.1111/imb.12347
Rimal, S., Sang, J., Poudel, S., Thakur, D., Montell, C., & Lee, Y. (2019). Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Reports, 26(6), 1432-1442. https://doi.org/10.1016/j.celrep.2019.01.042
Robertson, H. M., & Wanner, K. W. (2006). The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Research, 16(11), 1395-1403. https://doi.org/10.1101/gr.5057506
Robertson, H. M., Warr, C. G., & Carlson, J. R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14537-14542. https://doi.org/10.1073/pnas.2335847100
Robinson, G. E., Underwood, B. A., Henderson, C. E., & Henderson, C. E. (1984). A highly specialized water-collecting honey bee. Apidologie, 15(3), 355-358. https://doi.org/10.1051/apido:19840307
Rytz, R., Croset, V., & Benton, R. (2013). Ionotropic receptors (IRs): Chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochemistry and Molecular Biology, 43(9), 888-897. https://doi.org/10.1016/j.ibmb.2013.02.007
Sadd, B. M., Barribeau, S. M., Bloch, G., de Graaf, D. C., Dearden, P., Elsik, C. G., Gadau, J., Grimmelikhuijzen, C. J. P., Hasselmann, M., Lozier, J. D., Robertson, H. M., Smagghe, G., Stolle, E., Van Vaerenbergh, M., Waterhouse, R. M., Bornberg-Bauer, E., Klasberg, S., Bennett, A. K., Câmara, F., … Worley, K. C. (2015). The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 16(1), 1-32. https://doi.org/10.1186/s13059-015-0623-3
Sanchez-Bayo, F., & Goka, K. (2014). Pesticide residues and bees - A risk assessment. PLoS ONE, 9(4), e94482. https://doi.org/10.1371/journal.pone.0094482
Sandoz, J. C. (2011). Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in Systems Neuroscience, 5, 98. https://doi.org/10.3389/fnsys.2011.00098
Sato, K., Tanaka, K., & Touhara, K. (2011). Sugar-regulated cation channel formed by an insect gustatory receptor. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11680-11685. https://doi.org/10.1073/pnas.1019622108
Scheiner, R., & Arnold, G. (2010). Effects of patriline on gustatory responsiveness and olfactory learning in honey bees. Apidologie, 41(1), 29-37. https://doi.org/10.1051/apido/2009040
Scheiner, R., Baumann, A., & Blenau, W. (2006). Aminergic control and modulation of honeybee behaviour. Current Neuropharmacology, 4(4), 259-276. https://doi.org/10.2174/157015906778520791
Scheiner, R., Page, R. E., & Erber, J. (2004). Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie, 35(2), 133-142. https://doi.org/10.1051/apido:2004001
Scheiner, R., Plückhahn, S., Öney, B., Blenau, W., & Erber, J. (2002). Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behavioural Brain Research, 136(2), 545-553. https://doi.org/10.1016/S0166-4328(02)00205-X
Scheiner, R., Reim, T., Søvik, E., Entler, B. V., Barron, A. B., & Thamm, M. (2017). Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. Journal of Experimental Biology, 220(8), 1443-1450. https://doi.org/10.1242/jeb.152496
Scheiner, R., Schnitt, S., & Erber, J. (2005). The functions of antennal mechanoreceptors and antennal joints in tactile discrimination of the honeybee (Apis mellifera L.). Journal of Comparative Physiology A, 191(9), 857-864. https://doi.org/10.1007/s00359-005-0009-1
Schneider, D., & Hecker, E. (1956). Zur Elektrophysiologie der Antenne des Seidenspinners Bombyx mori bei Reizung mit angereicherten Extrakten des Sexuallockstoffes. Zeitschrift Fur Naturforschung B, 11(3), 121-124. https://doi.org/10.1515/znb-1956-0301
Schoonhoven, L. M., & van Loon, J. J. A. (2002). An inventory of taste in caterpillars: Each species its own key. Acta Zoologica Academiae Scientiarum Hungaricae, 48(Suppl 1), 215-263.
Schulz, D. J., Barron, A. B., & Robinson, G. E. (2002). A role for octopamine in honey bee division of labor. Brain, Behavior and Evolution, 60(6), 350-359. https://doi.org/10.1159/000067788
Scott, K. (2018). Gustatory processing in Drosophila melanogaster. Annual Review of Entomology, 63, 15-30. https://doi.org/10.1146/annurev-ento-020117-043331
Scott, K., Brady, R., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., & Axel, R. (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell, 104(5), 661-673. https://doi.org/10.1016/S0092-8674(01)00263-X
Sellier, M.-J., Reeb, P., & Marion-Poll, F. (2011). Consumption of bitter alkaloids in Drosophila melanogaster in multiple-choice test conditions. Chemical Senses, 36(4), 323-334. https://doi.org/10.1093/chemse/bjq133
Si Quang, L., Gascuel, O., & Lartillot, N. (2008). Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics, 24(20), 2317-2323. https://doi.org/10.1093/bioinformatics/btn445
Simcock, N. K., Wakeling, L. A., Ford, D., & Wright, G. A. (2017). Effects of age and nutritional state on the expression of gustatory receptors in the honeybee (Apis mellifera). PLoS ONE, 12(4), e0175158. https://doi.org/10.1371/journal.pone.0175158
Simpson, S. J., & Simpson, C. L. (1992). Mechanisms controlling modulation by haemolymph amino acids of gustatory responsiveness in the locust. Journal of Experimental Biology, 168(1), 269-287. https://doi.org/10.1242/JEB.168.1.269
Singaravelan, N., Nee'man, G., Inbar, M., & Izhaki, I. (2005). Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical Ecology, 31(12), 2791-2804. https://doi.org/10.1007/s10886-005-8394-z
Slone, J., Daniels, J., & Amrein, H. (2007). Sugar receptors in Drosophila. Current Biology, 17(20), 1809-1816. https://doi.org/10.1016/j.cub.2007.09.027
Smith, C. D., Zimin, A., Holt, C., Abouheif, E., Benton, R., Cash, E., Croset, V., Currie, C. R., Elhaik, E., Elsik, C. G., Fave, M.-J., Fernandes, V., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Helmkampf, M., Holley, J.-A., … Tsutsui, N. D. (2011). Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5673-5678. https://doi.org/10.1073/pnas.1008617108
Snordgrass, R. E. (1956). Anatomy of the honey bee. Cornell University Press.
Sollai, G., Biolchini, M., & Crnjar, R. (2018). Taste sensitivity and divergence in host plant acceptance between adult females and larvae of Papilio hospiton. Insect Science, 25(5), 809-822. https://doi.org/10.1111/1744-7917.12581
Sollai, G., & Crnjar, R. (2019). The contribution of gustatory input to larval acceptance and female oviposition choice of potential host plants in Papilio hospiton (Géné). Archives of Insect Biochemistry and Physiology, 100(1), e21521. https://doi.org/10.1002/arch.21521
Søvik, E., Perry, C. J., LaMora, A., Barron, A. B., & Ben-Shahar, Y. (2015). Negative impact of manganese on honeybee foraging. Biology Letters, 11(3), 20140989. https://doi.org/10.1098/rsbl.2014.0989
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Starostina, E., Liu, T., Vijayan, V., Zheng, Z., Siwicki, K. K., & Pikielny, C. W. (2012). A Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. Journal of Neuroscience, 32(13), 4665-4674. https://doi.org/10.1523/JNEUROSCI.6178-11.2012
Stocker, R. F. (1994). The organization of the chemosensory system in Drosophila melanogaster: A rewiew. Cell and Tissue Research, 275(1), 3-26. https://doi.org/10.1007/BF00305372
Stocker, R. F. (2004). Taste perception: Drosophila - A model of good taste. Current Biology, 14(14), R560-R561. https://doi.org/10.1016/j.cub.2004.07.011
Stoffolano, J. G., Schauber, E., Yin, C. M., Tillman, J. A., & Blomquist, G. J. (1997). Cuticular hydrocarbons and their role in copulatory behavior in Phormia regina (Meigen). Journal of Insect Physiology, 43(11), 1065-1076. https://doi.org/10.1016/S0022-1910(97)00050-4
Szczęsna, T. (2006). Protein content and amino acid composition of bee-collected pollen from selected botanical origins. Journal of Apicultural Science, 50(2), 91-99.
Takada, T., Sasaki, T., Sato, R., Kikuta, S., & Inoue, M. N. (2018). Differential expression of a fructose receptor gene in honey bee workers according to age and behavioral role. Archives of Insect Biochemistry and Physiology, 97(2), e21437. https://doi.org/10.1002/arch.21437
Tanimura, T., & Shimada, I. (1981). Multiple receptor proteins for sweet taste in Drosophila discriminated by papain treatment. Journal of Comparative Physiology A, 141(2), 265-269. https://doi.org/10.1007/BF01342672
Taylor, D. J., Robinson, G. E., Logan, B. J., Laverty, R., & Mercer, A. R. (1992). Changes in brain amine levels associated with the morphological and behavioural development of the worker honeybee. Journal of Comparative Physiology A, 170(6), 715-721. https://doi.org/10.1007/BF00198982
Tedjakumala, S. R., Aimable, M., & Giurfa, M. (2014). Pharmacological modulation of aversive responsiveness in honey bees. Frontiers in Behavioral Neuroscience, 7, 221. https://doi.org/10.3389/fnbeh.2013.00221
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673
Thorne, N., Chromey, C., Bray, S., & Amrein, H. (2004). Taste perception and coding in Drosophila. Current Biology, 14(12), 1065-1079. https://doi.org/10.1016/j.cub.2004.05.019
Tsuruda, J. M., & Page, R. E. (2009). The effects of foraging role and genotype on light and sucrose responsiveness in honey bees (Apis mellifera L.). Behavioural Brain Research, 205(1), 132-137. https://doi.org/10.1016/j.bbr.2009.07.022
vanEngelsdorp D., Evans J. D., Saegerman C., Mullin C., Haubruge E., Nguyen B. K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D. R., & Pettis J. S. (2009). Colony Collapse Disorder: A Descriptive Study. PLoS ONE, 4(8), e6481. http://dx.doi.org/10.1371/journal.pone.0006481
Velarde, R. A., Sauer, C. D., Walden, K. K. O., Fahrbach, S. E., & Robertson, H. M. (2005). Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochemistry and Molecular Biology, 35(12), 1367-1377. https://doi.org/10.1016/j.ibmb.2005.09.001
Viswanath, V., Story, G. M., Peier, A. M., Petrus, M. J., Lee, V. M., Hwang, S. W., … Tim, J. (2003). Opposite thermosensor in fruitfly and mouse. Nature, 423(6942), 822-823. https://doi.org/10.1038/423822a
von Frisch, K. (1934). Über den Geschmackssinn der Biene - Ein Beitrag zur vergleichenden Physiologie des Geschmacks. Zeitschrift Für Vergleichende Physiologie, 21(1), 1-156. https://doi.org/10.1007/BF00338271
von Frisch, K. (1967). The Dance Language and Orientation of Bees (pp. 1-566). Cambridge, Massachusetts: Belknap Press.
Vosshall, L. B., & Stocker, R. F. (2007, June 28). Molecular architecture of smell and taste in Drosophila. Annual Review of Neuroscience, 30(8), 505-533. https://doi.org/10.1146/annurev.neuro.30.051606.094306
Wakakuwa, M., Kurasawa, M., Giurfa, M., & Arikawa, K. (2005). Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften, 92(10), 464-467. https://doi.org/10.1007/s00114-005-0018-5
Waller, G. D. (1972). Evaluating responses of honey bees to sugar solutions using an artificial-flower feeder. Annals of the Entomological Society of America, 65(4), 857-862. https://doi.org/10.1093/aesa/65.4.857
Wang, G., Qiu, Y. T., Lu, T., Kwon, H.-W., Jason Pitts, R., Van Loon, J. J. A., … Zwiebel, L. J. (2009). Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae. European Journal of Neuroscience, 30(6), 967-974. https://doi.org/10.1111/j.1460-9568.2009.06901.x
Wang, Y., Baker, N., & Amdam, G. V. (2013). RNAi-mediated double gene knockdown and gustatory perception measurement in honey bees (Apis mellifera). Journal of Visualized Experiments: Jove, 77, 50446. https://doi.org/10.3791/50446
Wang, Z., Singhvi, A., Kong, P., & Scott, K. (2004). Taste representations in the Drosophila brain. Cell, 117(7), 981-991. https://doi.org/10.1016/j.cell.2004.06.011
Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D., & Carlson, J. R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron, 69(2), 258-272. https://doi.org/10.1016/j.neuron.2011.01.001
Whitehead, A. T. (1978). Electrophysiological response of honey bee labial palp contact chemoreceptors to sugars and electrolytes. Physiological Entomology, 3(3), 241-248. https://doi.org/10.1111/j.1365-3032.1978.tb00153.x
Whitehead, A. T., & Larsen, J. R. (1976a). Ultrastructure of the contact chemoreceptors of Apis mellifera L. (Hymenoptera: Apidae). International Journal of Insect Morphology and Embryology, 5(4-5), 301-315. https://doi.org/10.1016/0020-7322(76)90030-1
Whitehead, A. T., & Larsen, J. R. (1976b). Electrophysiological responses of galeal contact chemoreceptors of Apis mellifera to selected sugars and electrolytes. Journal of Insect Physiology, 22(12), 1609-1616. https://doi.org/10.1016/0022-1910(76)90052-4
Wisotsky, Z., Medina, A., Freeman, E., & Dahanukar, A. (2011). Evolutionary differences in food preference rely on Gr64e, a receptor for glycerol. Nature Neuroscience, 14(12), 1534-1541. https://doi.org/10.1038/nn.2944
Wright, G. A., Baker, D. D., Palmer, M. J., Stabler, D., Mustard, J. A., Power, E. F., … Stevenson, P. C. (2013). Caffeine in floral nectar enhances a pollinator's memory of reward. Science, 339(6124), 1202-1204. https://doi.org/10.1126/science.1228806
Wright, G. A., Mustard, J. A., Simcock, N. K., Ross-Taylor, A. A. R., McNicholas, L. D., Popescu, A., & Marion-Poll, F. (2010). Parallel reinforcement pathways for conditioned food aversions in the honeybee. Current Biology, 20(24), 2234-2240. https://doi.org/10.1016/j.cub.2010.11.040
Wykes, G. R. (1952). The preferences of honeybees for solutions of various sugars which occur in nectar. Journal of Experimental Biology, 29(4), 511-519. https://doi.org/10.1242/jeb.29.4.511
Xu, W. (2020). How do moth and butterfly taste?-Molecular basis of gustatory receptors in Lepidoptera. Insect Science, 27(6), 1148-1157. https://doi.org/10.1111/1744-7917.12718
Zhang, Y. V., Ni, J., & Montell, C. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science, 340(6138), 1334-1338. https://doi.org/10.1126/science.1234133
Zhong, L., Bellemer, A., Yan, H., Honjo, K., Robertson, J., Hwang, R. Y., Pitt, G. S., & Tracey, W. D. (2012). Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Reports, 1(1), 43-55. https://doi.org/10.1016/j.celrep.2011.11.002

Auteurs

Louise Bestea (L)

Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.

Alexandre Réjaud (A)

Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France.

Jean-Christophe Sandoz (JC)

Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France.

Julie Carcaud (J)

Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France.

Martin Giurfa (M)

Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.
College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.
Institut Universitaire de France (IUF), Paris, France.

Maria Gabriela de Brito Sanchez (MG)

Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH