Cytokine response following perturbation of the cervicovaginal milieu during HPV genital infection.
Cytokines
Human papillomavirus
Mucosal immunity
Natural history
Journal
Immunologic research
ISSN: 1559-0755
Titre abrégé: Immunol Res
Pays: United States
ID NLM: 8611087
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
08
03
2021
accepted:
21
04
2021
pubmed:
4
5
2021
medline:
1
2
2022
entrez:
3
5
2021
Statut:
ppublish
Résumé
Human papillomaviruses (HPVs) are oncogenic viruses causing most cervical cancers. Highly prevalent in young, sexually active women, only a minority of HPV infections persist. To better characterize the immuno-modulatory impact of early HPV infections, we measured changes in a panel of 20 cytokines in cervicovaginal samples collected from young women who were tested for HPV and self-reported for genital inflammation and infection symptoms. Multi-factor statistical analyses revealed that increased IL-1Alpha and IL-12/IL-23p40 concentrations were associated with HPV infection and that macrophage inflammatory proteins were associated in particular with high-risk HPV infections. ClinicalTrials.gov identifier NCT02946346.
Identifiants
pubmed: 33939124
doi: 10.1007/s12026-021-09196-2
pii: 10.1007/s12026-021-09196-2
doi:
Substances chimiques
IL1A protein, human
0
Interleukin-12 Subunit p40
0
Interleukin-1alpha
0
Banques de données
ClinicalTrials.gov
['NCT02946346']
Types de publication
Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
255-263Références
de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141:664–70. https://doi.org/10.1002/ijc.30716 .
doi: 10.1002/ijc.30716
pubmed: 28369882
pmcid: 5520228
Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370:890–907. https://doi.org/10.1016/S0140-6736(07)61416-0 .
doi: 10.1016/S0140-6736(07)61416-0
pubmed: 17826171
Rodríguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, Castle PE, Solomon D, Burk R. Proyecto Epidemiológico Guanacaste Group, Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst. 2008;100:513–7. https://doi.org/10.1093/jnci/djn044 .
doi: 10.1093/jnci/djn044
pubmed: 18364507
IARC working group on the evaluation of carcinogenic risks to humans: occupational exposures of hairdressers and barbers and personal use of hair colourants; some hair dyes, cosmetic colourants, industrial dyestuffs and aromatic amines. Proceedings. Lyon, France, 6-13 October 1992. IARC Monogr Eval Carcinog Risks Hum. 1993; 57:7–398.
Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: An update. Int J Cancer. 2018;142:224–9. https://doi.org/10.1002/ijc.31027 .
doi: 10.1002/ijc.31027
pubmed: 28865151
Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm. 2010; (2010). https://doi.org/10.1155/2010/976024 .
Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses. 2013;5:2624–42. https://doi.org/10.3390/v5112624 .
doi: 10.3390/v5112624
pubmed: 24169630
pmcid: 3856406
Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo). 2018;73:e549s. https://doi.org/10.6061/clinics/2018/e549s .
doi: 10.6061/clinics/2018/e549s
Stanley M. Immunology of HPV Infection. Curr Obstet Gynecol Rep. 2015;4:195–200. https://doi.org/10.1007/s13669-015-0134-y .
doi: 10.1007/s13669-015-0134-y
Leone P, Shin E-C, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105:1172–87. https://doi.org/10.1093/jnci/djt184 .
doi: 10.1093/jnci/djt184
pubmed: 23852952
Alizon S, Murall CL, Bravo IG. Why Human Papillomavirus Acute Infections Matter. Viruses. 2017;9:293. https://doi.org/10.3390/v9100293 .
doi: 10.3390/v9100293
pmcid: 5691644
Murall CL, Rahmoun M, Selinger C, Baldellou M, Bernat C, Bonneau M, Boué V, Buisson M, Christophe G, D’Auria G, Taroni FD, Foulongne V, Froissart R, Graf C, Grasset S, Groc S, Hirtz C, Jaussent A, Lajoie J, Lorcy F, Picot E, Picot M-C, Ravel J, Reynes J, Rousset T, Seddiki A, Teirlinck M, Tribout V, Tuaillon É, Waterboer T, Jacobs N, Bravo IG, Segondy M, Boulle N, Alizon S. Natural history, dynamics, and ecology of human papillomaviruses in genital infections of young women: protocol of the PAPCLEAR cohort study. BMJ Open. 2019;9:e025129. https://doi.org/10.1136/bmjopen-2018-025129 .
doi: 10.1136/bmjopen-2018-025129
pubmed: 31189673
pmcid: 6576111
Murall CL, Reyné B, Selinger C, Bernat C, Boué V, Grasset S, Groc S, Rahmoun M, Bender N, Bonneau M, Foulongne V, Graf C, Picot E, Picot M-C, Tribout V, Waterboer T, Bravo IG, Reynes J, Segondy M, Boulle N, Alizon S. HPV cervical infections and serological status in vaccinated and unvaccinated women. Vaccine. 2020;38:8167–74. https://doi.org/10.1016/j.vaccine.2020.10.078 .
doi: 10.1016/j.vaccine.2020.10.078
pubmed: 33168348
Dunn J, Wild D. Chapter 3.6 - Calibration Curve Fitting. In: Wild D, editors. The Immunoassay Handbook, 4th ed. Oxford: Elsevier; 2013.p. 323–336. https://doi.org/10.1016/B978-0-08-097037-0.00022-1 .
O’Connell MA, Belanger BA, Haaland PD. Calibration and assay development using the four-parameter logistic model. Chemom Intell Lab Syst. 1993;20:97–114. https://doi.org/10.1016/0169-7439(93)80008-6 .
doi: 10.1016/0169-7439(93)80008-6
Moscicki AB, Shiboski S, Broering J, Powell K, Clayton L, Jay N, Darragh TM, Brescia R, Kanowitz S, Miller SB, Stone J, Hanson E, Palefsky J. The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women. J Pediatr. 1998;132:277–84. https://doi.org/10.1016/s0022-3476(98)70445-7 .
doi: 10.1016/s0022-3476(98)70445-7
pubmed: 9506641
Zanotta N, Tornesello ML, Annunziata C, Stellato G, Buonaguro FM, Comar M. Candidate soluble immune mediators in young women with high-risk human papillomavirus infection: high expression of chemokines promoting angiogenesis and cell proliferation. PLoS One. 2016;11:e0151851. https://doi.org/10.1371/journal.pone.0151851 .
doi: 10.1371/journal.pone.0151851
pubmed: 26990868
pmcid: 4798492
Tummers B, Van Der Burg SH. High-risk human papillomavirus targets crossroads in immune signaling. Viruses. 2015;7:2485–506. https://doi.org/10.3390/v7052485 .
doi: 10.3390/v7052485
pubmed: 26008697
pmcid: 4452916
Fernandes APM, Gonçalves MAG, Duarte G, Cunha FQ, Simões RT, Donadi EA. HPV16, HPV18, and HIV infection may influence cervical cytokine intralesional levels. Virology. 2005;334:294–8. https://doi.org/10.1016/j.virol.2005.01.029 .
doi: 10.1016/j.virol.2005.01.029
pubmed: 15780879
Liebenberg LJP, McKinnon LR, Yende-Zuma N, Garrett N, Baxter C, Kharsany ABM, Archary D, Rositch A, Samsunder N, Mansoor LE, Passmore J-AS, AbdoolKarim SS, AbdoolKarim Q. HPV infection and the genital cytokine milieu in women at high risk of HIV acquisition. Nat Commun. 2019;10:5227. https://doi.org/10.1038/s41467-019-13089-2 .
doi: 10.1038/s41467-019-13089-2
pubmed: 31745084
pmcid: 6863918
Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, Thomas-Pavanel J, Chieza L, Janakiram P, Saunders M, Tharao W, Huibner S, Shahabi K, Ravel J, Rebbapragada A, Kaul R. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017;10:1310–9. https://doi.org/10.1038/mi.2016.129 .
doi: 10.1038/mi.2016.129
pubmed: 28120845
pmcid: 5526752
Moscicki A-B, Shi B, Huang H, Barnard E, Li H. Cervical-vaginal microbiome and associated cytokine profiles in a prospective study of HPV 16 acquisition, persistence, and clearance. Front Cell Infect Microbiol. (2020); 10. https://doi.org/10.3389/fcimb.2020.569022 .
Jespers V, Hardy L, Buyze J, Loos J, Buvé A, Crucitti T. Association of sexual debut in adolescents with microbiota and inflammatory markers. Obstet Gynecol. 2016;128:22–31. https://doi.org/10.1097/AOG.0000000000001468 .
doi: 10.1097/AOG.0000000000001468
pubmed: 27275789
Ghosh M, Jais M, Biswas R, Jarin J, Daniels J, Joy C, Juzumaite M, Emmanuel V, Gomez-Lobo V. Immune biomarkers and anti-HIV activity in the reproductive tract of sexually active and sexually inactive adolescent girls. Am J Reprod Immunol. 2018;79:e12846. https://doi.org/10.1111/aji.12846 .
doi: 10.1111/aji.12846
pubmed: 29533494
pmcid: 5948140
Boily-Larouche G, Lajoie J, Dufault B, Omollo K, Cheruiyot J, Njoki J, Kowatsch M, Kimani M, Kimani J, Oyugi J, Fowke KR. Characterization of the genital mucosa immune profile to distinguish phases of the menstrual cycle: implications for HIV susceptibility. J Infect Dis. 2019;219:856–66. https://doi.org/10.1093/infdis/jiy585 .
doi: 10.1093/infdis/jiy585
pubmed: 30383238
Kanai T, Fukuda-Miki M, Shimoya K, Azuma C, Hashimoto K, Nobunaga T, Tokugawa Y, Tsujimoto M, Saji F, Murata Y. Increased interleukin-1 and interleukin-1 receptor antagonist levels in cervical mucus in the ovulatory phase in comparison with the follicular phase. Gynecol Obstet Invest. 1997;43:166–70. https://doi.org/10.1159/000291847 .
doi: 10.1159/000291847
pubmed: 9127129
Gosmann C, Mattarollo SR, Bridge JA, Frazer IH, Blumenthal A. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J Immunol. 2014;193:2248–57. https://doi.org/10.4049/jimmunol.1400216 .
doi: 10.4049/jimmunol.1400216
pubmed: 25063870
Hede DV, Polese B, Humblet C, Wilharm A, Renoux V, Dortu E, de Leval L, Delvenne P, Desmet CJ, Bureau F, Vermijlen D, Jacobs N. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. PNAS. 2017;114:E9056–65. https://doi.org/10.1073/pnas.1712883114 .
doi: 10.1073/pnas.1712883114
pubmed: 29073102
Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J Leukoc Biol. 2003;74:448–55. https://doi.org/10.1189/jlb.0103024 .
doi: 10.1189/jlb.0103024
pubmed: 12949249
Belay T, Eko FO, Ananaba GA, Bowers S, Moore T, Lyn D, Igietseme JU. Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect Immun. 2002;70:844–50. https://doi.org/10.1128/IAI.70.2.844-850.2002 .
doi: 10.1128/IAI.70.2.844-850.2002
pubmed: 11796619
pmcid: 127682
Poston TB, Lee DE, Darville T, Zhong W, Dong L, O’Connell CM, Wiesenfeld HC, Hillier SL, Sempowski GD, Zheng X. Cervical cytokines associated with chlamydia trachomatis susceptibility and protection. J Infect Dis. 2019;220:330–9. https://doi.org/10.1093/infdis/jiz087 .
doi: 10.1093/infdis/jiz087
pubmed: 30820577
pmcid: 6581900
Radomski N, Karger A, Franzke K, Liebler-Tenorio E, Jahnke R, Matthiesen S, Knittler MR. Chlamydia psittaci-infected dendritic cells communicate with NK cells via exosomes to activate antibacterial immunity. Infect Immun. 2019; 88. https://doi.org/10.1128/IAI.00541-19 .
Gillet E, Meys JF, Verstraelen H, Bosire C, De Sutter P, Temmerman M, Broeck DV. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis. BMC Infect Dis. 2011;11:10. https://doi.org/10.1186/1471-2334-11-10 .
doi: 10.1186/1471-2334-11-10
pubmed: 21223574
pmcid: 3023697
De Seta F, Campisciano G, Zanotta N, Ricci G, Comar M. The vaginal community state types microbiome-immune network as key factor for bacterial vaginosis and aerobic vaginitis. Front Microbiol. 2019;10:2451. https://doi.org/10.3389/fmicb.2019.02451 .
doi: 10.3389/fmicb.2019.02451
pubmed: 31736898
pmcid: 6831638
Masson L, Mlisana K, Little F, Werner L, Mkhize NN, Ronacher K, Gamieldien H, Williamson C, Mckinnon LR, Walzl G, AbdoolKarim Q, AbdoolKarim SS, Passmore J-AS. Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex Transm Infect. 2014;90:580–7. https://doi.org/10.1136/sextrans-2014-051601 .
doi: 10.1136/sextrans-2014-051601
pubmed: 25107710
Selinger C, Tisoncik-Go J, Menachery VD, Agnihothram S, Law GL, Chang J, Kelly SM, Sova P, Baric RS, Katze MG. Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates. BMC Genomics. 2014;15:1161. https://doi.org/10.1186/1471-2164-15-1161 .
doi: 10.1186/1471-2164-15-1161
pubmed: 25534508
pmcid: 4522970
Elovitz MA, Gajer P, Riis V, Brown AG, Humphrys MS, Holm JB, Ravel J. Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. Nat Commun. 2019;10:1305. https://doi.org/10.1038/s41467-019-09285-9 .
doi: 10.1038/s41467-019-09285-9
pubmed: 30899005
pmcid: 6428888