The Polygenic and Monogenic Basis of Paediatric Fractures.
Children
Fracture risk
Genetics
Genome-wide association studies
Osteoporosis
Paediatric
Journal
Current osteoporosis reports
ISSN: 1544-2241
Titre abrégé: Curr Osteoporos Rep
Pays: United States
ID NLM: 101176492
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
accepted:
15
04
2021
pubmed:
5
5
2021
medline:
12
2
2022
entrez:
4
5
2021
Statut:
ppublish
Résumé
Fractures are frequently encountered in paediatric practice. Although recurrent fractures in children usually unveil a monogenic syndrome, paediatric fracture risk could be shaped by the individual genetic background influencing the acquisition of bone mineral density, and therefore, the skeletal fragility as shown in adults. Here, we examine paediatric fractures from the perspective of monogenic and complex trait genetics. Large-scale genome-wide studies in children have identified ~44 genetic loci associated with fracture or bone traits whereas ~35 monogenic diseases characterized by paediatric fractures have been described. Genetic variation can predispose to paediatric fractures through monogenic risk variants with a large effect and polygenic risk involving many variants of small effects. Studying genetic factors influencing peak bone attainment might help in identifying individuals at higher risk of developing early-onset osteoporosis and discovering drug targets to be used as bone restorative pharmacotherapies to prevent, or even reverse, bone loss later in life.
Identifiants
pubmed: 33945105
doi: 10.1007/s11914-021-00680-0
pii: 10.1007/s11914-021-00680-0
pmc: PMC8551106
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
481-493Informations de copyright
© 2021. The Author(s).
Références
Mäyränpää MK, Mäkitie O, Kallio PE. Decreasing incidence and changing pattern of childhood fractures: a population-based study. J Bone Miner Res. 2010;25(12):2752–9.
MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med. 2002;36(4):250–7 discussion 7.
pubmed: 12145113
pmcid: 1724536
doi: 10.1136/bjsm.36.4.250
Mathison DJ, Agrawal D. An update on the epidemiology of pediatric fractures. Pediatric Emergency Care. 2010;26(8).
Trajanoska K, Morris JA, Oei L, Zheng HF, Evans DM, Kiel DP, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018;362:k3225.
pubmed: 30158200
pmcid: 6113773
doi: 10.1136/bmj.k3225
Landin LA. Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950-1979. Acta Orthop Scand Suppl. 1983;202:1–109.
pubmed: 6574687
Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976–81.
pubmed: 15537440
doi: 10.1359/jbmr.040902
Buhr AJ, Cooke AM. Fracture patterns. Lancet. 1959;1(7072):531–6.
pubmed: 13642800
doi: 10.1016/S0140-6736(59)92306-2
Trajanoska K, Schoufour JD, de Jonge EAL, Kieboom BCT, Mulder M, Stricker BH, et al. Fracture incidence and secular trends between 1989 and 2013 in a population based cohort: the Rotterdam Study. Bone. 2018;114:116–24.
pubmed: 29885926
doi: 10.1016/j.bone.2018.06.004
Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.
pubmed: 17878149
doi: 10.1056/NEJMoa074941
Tinkle BT, Wenstrup RJ. A genetic approach to fracture epidemiology in childhood. Am J Med Genet C: Semin Med Genet. 2005;139C(1):38–54.
doi: 10.1002/ajmg.c.30073
Olney RC, Mazur JM, Pike LM, Froyen MK, Ramirez-Garnica G, Loveless EA, et al. Healthy children with frequent fractures: how much evaluation is needed? Pediatrics. 2008;121(5):890–7.
pubmed: 18450891
doi: 10.1542/peds.2007-2079
Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117(2):e291–7.
pubmed: 16452336
doi: 10.1542/peds.2005-1404
Grgic O, Rivadeneira F, Shevroja E, Trajanoska K, Jaddoe VWV, Uitterlinden AG, et al. Femoral stress is prominently associated with fracture risk in children: the Generation R Study. Bone. 2019;122:150–5.
pubmed: 30798002
doi: 10.1016/j.bone.2019.02.018
Black DM, Cauley JA, Wagman R, Ensrud K, Fink HA, Hillier TA, et al. The ability of a single BMD and Fracture history assessment to predict fracture over 25 years in postmenopausal women: the study of osteoporotic fractures. J Bone Miner Res. 2018;33(3):389–95.
pubmed: 28719727
doi: 10.1002/jbmr.3194
Kralick AE, Zemel BS. Evolutionary perspectives on the developing skeleton and implications for lifelong health. Front Endocrinol (Lausanne). 2020;11:99.
doi: 10.3389/fendo.2020.00099
Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7.
pubmed: 12904837
doi: 10.1007/s00198-003-1454-8
Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88–102.
pubmed: 29304378
pmcid: 5777980
doi: 10.1016/j.ajhg.2017.12.005
Pitukcheewanont P, Austin J, Chen P, Punyasavatsut N. Bone health in children and adolescents: risk factors for low bone density. Pediatr Endocrinol Rev. 2013;10(3):318–35.
pubmed: 23724439
Hou R, Cole SA, Graff M, Haack K, Laston S, Comuzzie AG, et al. Genetic variants affecting bone mineral density and bone mineral content at multiple skeletal sites in Hispanic children. Bone. 2020;132:115175.
pubmed: 31790847
doi: 10.1016/j.bone.2019.115175
Parviainen R, Skarp S, Korhonen L, Serlo W, Männikkö M, Sinikumpu JJ. A single genetic locus associated with pediatric fractures: a genome-wide association study on 3,230 patients. Exp Ther Med. 2020;20(2):1716–24.
pubmed: 32742401
pmcid: 7388260
doi: 10.3892/etm.2020.8885
Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.
pubmed: 22504420
pmcid: 3338864
doi: 10.1038/ng.2249
Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51(2):258–66.
pubmed: 30598549
doi: 10.1038/s41588-018-0302-x
Faulkner KG. Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res. 2000;15(2):183–7.
pubmed: 10703919
doi: 10.1359/jbmr.2000.15.2.183
Timpson NJ, Tobias JH, Richards JB, Soranzo N, Duncan EL, Sims AM, et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum Mol Genet. 2009;18(8):1510–7.
pubmed: 19181680
pmcid: 2664147
doi: 10.1093/hmg/ddp052
Kemp JP, Medina-Gomez C, Estrada K, St Pourcain B, Heppe DH, Warrington NM, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6):e1004423.
pubmed: 24945404
pmcid: 4063697
doi: 10.1371/journal.pgen.1004423
Medina-Gomez C, Kemp JP, Estrada K, Eriksson J, Liu J, Reppe S, et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 2012;8(7):e1002718.
pubmed: 22792070
pmcid: 3390371
doi: 10.1371/journal.pgen.1002718
Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, McCormack SE, et al. A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum Mol Genet. 2015;24(17):5053–9.
pubmed: 26041818
pmcid: 4527490
doi: 10.1093/hmg/ddv210
Mitchell JA, Chesi A, Cousminer DL, McCormack SE, Kalkwarf HJ, Lappe JM, et al. Multidimensional bone density phenotyping reveals new insights into genetic regulation of the pediatric skeleton. J Bone Miner Res. 2018;33(5):812–21.
pubmed: 29240982
doi: 10.1002/jbmr.3362
Cousminer DL, Wagley Y, Pippin JA, Elhakeem A, Way GP, Pahl MC, et al. Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual. Genome Biol. 2021;22(1):1.
pubmed: 33397451
pmcid: 7780623
doi: 10.1186/s13059-020-02207-9
Cousminer DL, McCormack SE, Mitchell JA, Chesi A, Kindler JM, Kelly A, et al. Postmenopausal osteoporotic fracture-associated COLIA1 variant impacts bone accretion in girls. Bone. 2019;121:221–6.
pubmed: 30711642
pmcid: 6800229
doi: 10.1016/j.bone.2019.01.026
Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, Cousminer DL, et al. A genomewide association study identifies two sex-specific loci, at SPTB and IZUMO3, influencing pediatric bone mineral density at multiple skeletal sites. J Bone Miner Res. 2017;32(6):1274–81.
pubmed: 28181694
doi: 10.1002/jbmr.3097
Mitchell JA, Chesi A, McCormack SE, Roy SM, Cousminer DL, Kalkwarf HJ, et al. Rare EN1 variants and pediatric bone mass. J Bone Miner Res. 2016;31(8):1513–7.
pubmed: 26970088
doi: 10.1002/jbmr.2833
Paternoster L, Lorentzon M, Lehtimäki T, Eriksson J, Kähönen M, Raitakari O, et al. Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet. 2013;9(2):e1003247.
pubmed: 23437003
pmcid: 3578773
doi: 10.1371/journal.pgen.1003247
Courant F, Aksglaede L, Antignac JP, Monteau F, Sorensen K, Andersson AM, et al. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab. 2010;95(1):82–92.
pubmed: 19933393
doi: 10.1210/jc.2009-1140
Zhang Q, Greenbaum J, Zhang WD, Sun CQ, Deng HW. Age at menarche and osteoporosis: a Mendelian randomization study. Bone. 2018;117:91–7.
pubmed: 30240960
pmcid: 6346741
doi: 10.1016/j.bone.2018.09.015
Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7):e1002745.
pubmed: 22792071
pmcid: 3390364
doi: 10.1371/journal.pgen.1002745
Lu HF, Hung KS, Chu HW, Wong HS, Kim J, Kim MK, et al. Meta-analysis of genome-wide association studies identifies three loci associated with stiffness index of the calcaneus. J Bone Miner Res. 2019;34(7):1275–83.
pubmed: 30779856
doi: 10.1002/jbmr.3703
Movérare-Skrtic S, Wu J, Henning P, Gustafsson KL, Sjögren K, Windahl SH, et al. The bone-sparing effects of estrogen and WNT16 are independent of each other. Proc Natl Acad Sci U S A. 2015;112(48):14972–7.
pubmed: 26627248
pmcid: 4672787
doi: 10.1073/pnas.1520408112
Wergedal JE, Kesavan C, Brommage R, Das S, Mohan S. Role of WNT16 in the regulation of periosteal bone formation in female mice. Endocrinology. 2015;156(3):1023–32.
pubmed: 25521583
doi: 10.1210/en.2014-1702
Todd H, Galea GL, Meakin LB, Delisser PJ, Lanyon LE, Windahl SH, et al. Wnt16 is associated with age-related bone loss and estrogen withdrawal in murine bone. PLoS One. 2015;10(10):e0140260.
pubmed: 26451596
pmcid: 4599960
doi: 10.1371/journal.pone.0140260
Movérare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Börjesson AE, et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med. 2014;20(11):1279–88.
pubmed: 25306233
pmcid: 4392888
doi: 10.1038/nm.3654
Alam I, Reilly AM, Alkhouli M, Gerard-O’Riley RL, Kasipathi C, Oakes DK, et al. Bone mass and strength are significantly improved in mice overexpressing human WNT16 in osteocytes. Calcif Tissue Int. 2017;100(4):361–73.
pubmed: 28013361
doi: 10.1007/s00223-016-0225-4
Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, et al. Genome-scale capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun. 2019;10(1):1260.
pubmed: 30890710
pmcid: 6425012
doi: 10.1038/s41467-019-09302-x
Bendre A, Buki KG, Maatta JA. Fam3c modulates osteogenic differentiation by down-regulating Runx2. Differentiation. 2017;93:50–7.
pubmed: 27914282
doi: 10.1016/j.diff.2016.11.005
Liu Y, Shen H, Greenbaum J, Liu A, Su KJ, Zhang LS, et al. Gene expression and RNA splicing imputation identifies novel candidate genes associated with osteoporosis. J Clin Endocrinol Metab. 2020;105(12).
Medina-Gómez C, Chesi A, Heppe DH, Zemel BS, Yin JL, Kalkwarf HJ, et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol Biol Evol. 2015;32(11):2961–72.
pubmed: 26226985
pmcid: 4651235
doi: 10.1093/molbev/msv170
Warrington NM, Kemp JP, Tilling K, Tobias JH, Evans DM. Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence. Hum Mol Genet. 2015;24(14):4158–66.
pubmed: 25941325
pmcid: 4476449
doi: 10.1093/hmg/ddv143
Mitchell JA, Chesi A, Elci O, McCormack SE, Roy SM, Kalkwarf HJ, et al. Genetic risk scores implicated in adult bone fragility associate with pediatric bone density. J Bone Miner Res. 2016;31(4):789–95.
pubmed: 26572781
doi: 10.1002/jbmr.2744
Esplin ED, Oei L, Snyder MP. Personalized sequencing and the future of medicine: discovery, diagnosis and defeat of disease. Pharmacogenomics. 2014;15(14):1771–90.
pubmed: 25493570
doi: 10.2217/pgs.14.117
Mitchell JA, Chesi A, Elci O, McCormack SE, Roy SM, Kalkwarf HJ, et al. Physical activity benefits the skeleton of children genetically predisposed to lower bone density in adulthood. J Bone Miner Res. 2016;31(8):1504–12.
pubmed: 27172274
doi: 10.1002/jbmr.2872
Makitie O. Causes, mechanisms and management of paediatric osteoporosis. Nat Rev Rheumatol. 2013;9(8):465–75.
pubmed: 23591487
doi: 10.1038/nrrheum.2013.45
Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179(12):2393–419.
pubmed: 31633310
doi: 10.1002/ajmg.a.61366
Kampe AJ, Makitie RE, Makitie O. New genetic forms of childhood-onset primary osteoporosis. Hormone Research in Paediatrics. 2015;84(6):361–9.
pubmed: 26517534
doi: 10.1159/000439566
Makitie RE, Costantini A, Kampe A, Alm JJ, Makitie O. New insights into monogenic causes of osteoporosis. Front Endocrinol (Lausanne). 2019;10:70.
doi: 10.3389/fendo.2019.00070
van Dijk FS, Semler O, Etich J, Köhler A, Jimenez-Estrada JA, Bravenboer N, et al. Interaction between KDELR2 and HSP47 as a key determinant in osteogenesis imperfecta caused by bi-allelic variants in KDELR2. The American Journal of Human Genetics. 2020.
Rivadeneira F, Makitie O. Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab. 2016;27(5):262–81.
pubmed: 27079517
doi: 10.1016/j.tem.2016.03.006
Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R, et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet. 2010;87(1):110–4.
pubmed: 20579626
pmcid: 2896769
doi: 10.1016/j.ajhg.2010.05.016
Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.
pubmed: 17632511
doi: 10.1038/ng2076
Pope FM, Nicholls AC, Mcpheat J, Talmud P, Owen R. Collagen genes and proteins in osteogenesis imperfecta. J Med Genet. 1985;22(6):466–78.
pubmed: 3001313
pmcid: 1049508
doi: 10.1136/jmg.22.6.466
Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A, et al. Osteogenesis imperfecta. Nature Reviews Disease Primers. 2017;3:17052.
pubmed: 28820180
doi: 10.1038/nrdp.2017.52
Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470–81.
pubmed: 24715559
doi: 10.1002/ajmg.a.36545
Folkestad L, Hald JD, Ersbøll AK, Gram J, Hermann AP, Langdahl B, et al. Fracture rates and fracture sites in patients with osteogenesis imperfecta: a nationwide register-based cohort study. J Bone Miner Res. 2017;32(1):125–34.
pubmed: 27448250
doi: 10.1002/jbmr.2920
Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–71.
pubmed: 26542481
doi: 10.1016/S0140-6736(15)00728-X
Beck K, Chan VC, Shenoy N, Kirkpatrick A, Ramshaw JAM, Brodsky B. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. 2000, 97 (8):4273-8.
Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(3):389–98.
pubmed: 20188343
pmcid: 2833387
doi: 10.1016/j.ajhg.2010.01.034
Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(4):551–9.
pubmed: 20362275
pmcid: 2850430
doi: 10.1016/j.ajhg.2010.02.022
Blouin S, Fratzl-Zelman N, Glorieux FH, Roschger P, Klaushofer K, Marini JC, et al. Hypermineralization and high osteocyte lacunar density in osteogenesis imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res. 2017;32(9):1884–92.
pubmed: 28548288
doi: 10.1002/jbmr.3180
Fratzl-Zelman N, Schmidt I, Roschger P, Roschger A, Glorieux FH, Klaushofer K, et al. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone. 2015;73:233–41.
pubmed: 25554599
doi: 10.1016/j.bone.2014.12.023
Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, et al. A single recurrent mutation in the 5’-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet. 2012;91(2):343–8.
pubmed: 22863190
pmcid: 3415533
doi: 10.1016/j.ajhg.2012.06.005
Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM, et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of theIFITM5c.−14C>T mutation in all patients. J Med Genet. 2012;50(1):21–4.
doi: 10.1136/jmedgenet-2012-101307
Wu D, Wang Y, Huang H. A novel variant of the IFITM5 gene within the 5′-UTR causes neonatal transverse clavicular fracture: expanding the genetic spectrum. Molecular Genetics & Genomic Medicine. 2020;8(7).
Lim JY, Bhatia NS, Vasanwala RF, Chay PL, Lim KBL, Khoo PC, et al. A novel Ser40Trp variant in IFITM5 in a family with osteogenesis imperfecta and review of the literature. Clin Dysmorphol. 2019;28(3):118–23.
doi: 10.1097/MCD.0000000000000279
Lietman CD, Marom R, Munivez E, Bertin TK, Jiang M-M, Chen Y, et al. A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res. 2015;30(3):489–98.
pubmed: 25251575
doi: 10.1002/jbmr.2363
Rauch F, Geng Y, Lamplugh L, Hekmatnejad B, Gaumond M-H, Penney J, et al. Crispr-Cas9 engineered osteogenesis imperfecta type V leads to severe skeletal deformities and perinatal lethality in mice. Bone. 2018;107:131–42.
pubmed: 29174564
doi: 10.1016/j.bone.2017.11.013
Bogan R, Riddle RC, Li Z, Kumar S, Nandal A, Faugere M-C, et al. A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res. 2013;28(7):1531–6.
pubmed: 23413146
doi: 10.1002/jbmr.1892
Becker J, Semler O, Gilissen C, Li Y, Bolz Hanno J, Giunta C, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011;88(3):362–71.
pubmed: 21353196
pmcid: 3059418
doi: 10.1016/j.ajhg.2011.01.015
Lindert U, Cabral WA, Ausavarat S, Tongkobpetch S, Ludin K, Barnes AM, et al. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nature Communications. 2016;7(1).
Mendoza-Londono R, Fahiminiya S, Majewski J. Care4Rare Canada C, Tetreault M, Nadaf J, et al. Recessive osteogenesis imperfecta caused by missense mutations in SPARC. Am J Hum Genet. 2015;96(6):979–85.
pubmed: 26027498
pmcid: 4457955
doi: 10.1016/j.ajhg.2015.04.021
Besio R, Chow CW, Tonelli F, Marini JC, Forlino A. Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J. 2019;286(15):3033–56.
pubmed: 31220415
pmcid: 7384889
doi: 10.1111/febs.14963
Pekkinen M, Terhal PA, Botto LD, Henning P, Makitie RE, Roschger P, et al. Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2. JCI Insight. 2019;4(7).
Robinson ME, Bardai G, Veilleux LN, Glorieux FH, Rauch F. Musculoskeletal phenotype in two unrelated individuals with a recurrent nonsense variant in SGMS2. Bone. 2020;134:115261.
pubmed: 32028018
doi: 10.1016/j.bone.2020.115261
Slotte JP, Ramstedt B. The functional role of sphingomyelin in cell membranes. Eur J Lipid Sci Technol. 2007;109(10):977–81.
doi: 10.1002/ejlt.200700024
Van Dijk FS, Zillikens MC, Micha D, Riessland M, Marcelis CL, de Die-Smulders CE, et al. PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med. 2013;369(16):1529–36.
pubmed: 24088043
doi: 10.1056/NEJMoa1308223
Fahiminiya S, Majewski J, Al-Jallad H, Moffatt P, Mort J, Glorieux FH, et al. Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J Bone Miner Res. 2014;29(8):1805–14.
pubmed: 24616189
doi: 10.1002/jbmr.2208
Laine CM, Wessman M, Toiviainen-Salo S, Kaunisto MA, Mayranpaa MK, Laine T, et al. A novel splice mutation in PLS3 causes X-linked early onset low-turnover osteoporosis. J Bone Miner Res. 2015;30(3):510–8.
pubmed: 25209159
doi: 10.1002/jbmr.2355
Kampe AJ, Costantini A, Makitie RE, Jantti N, Valta H, Mayranpaa M, et al. PLS3 sequencing in childhood-onset primary osteoporosis identifies two novel disease-causing variants. Osteoporos Int. 2017;28(10):3023–32.
pubmed: 28748388
pmcid: 5624974
doi: 10.1007/s00198-017-4150-9
Wesseling-Perry K, Makitie RE, Valimaki VV, Laine T, Laine CM, Valimaki MJ, et al. Osteocyte protein expression is altered in low-turnover osteoporosis caused by mutations in WNT1 and PLS3. J Clin Endocrinol Metab. 2017;102(7):2340–8.
pubmed: 28379384
pmcid: 5505188
doi: 10.1210/jc.2017-00099
Makitie RE, Kampe A, Costantini A, Alm JJ, Magnusson P, Makitie O. Biomarkers in WNT1 and PLS3 osteoporosis: altered concentrations of DKK1 and FGF23. J Bone Miner Res. 2020;35:901–12.
pubmed: 31968132
doi: 10.1002/jbmr.3959
Makitie RE, Hackl M, Weigl M, Frischer A, Kampe A, Costantini A, et al. Unique, gender-dependent serum microRNA profile in PLS3 gene-related osteoporosis. J Bone Miner Res. 2020;35:1962–73.
pubmed: 32453450
doi: 10.1002/jbmr.4097
Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013;368(19):1809–16.
pubmed: 23656646
pmcid: 3709450
doi: 10.1056/NEJMoa1215458
Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, et al. Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet. 2013;92(4):565–74.
pubmed: 23499309
pmcid: 3617378
doi: 10.1016/j.ajhg.2013.02.010
Makitie RE, Haanpaa M, Valta H, Pekkinen M, Laine CM, Lehesjoki AE, et al. Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res. 2016;31(9):1734–42.
pubmed: 27005318
doi: 10.1002/jbmr.2841
Makitie RE, Hackl M, Niinimaki R, Kakko S, Grillari J, Makitie O. Altered microRNA profile in osteoporosis caused by impaired WNT signaling. J Clin Endocrinol Metab. 2018;103(5):1985–96.
pubmed: 29506076
doi: 10.1210/jc.2017-02585
Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet. 2013;92(4):590–7.
pubmed: 23499310
pmcid: 3617391
doi: 10.1016/j.ajhg.2013.02.009
Moon R, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through b-catenin. Science. 2002;296(5573):1644–6.
pubmed: 12040179
doi: 10.1126/science.1071549
Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res. 2005;20(5):783–9.
pubmed: 15824851
doi: 10.1359/JBMR.050101
Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.
pubmed: 11719191
doi: 10.1016/S0092-8674(01)00571-2
Manousaki D, Kämpe A, Forgetta V, Makitie RE, Bardai G, Belisle A, et al. Increased burden of common risk alleles in children with a significant fracture history. J Bone Miner Res. 2020;35(5):875–82.
pubmed: 31914204
doi: 10.1002/jbmr.3956
Fahed AC, Wang M, Homburger JR, Patel AP, Bick AG, Neben CL, et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat Commun. 2020;11(1):3635.
pubmed: 32820175
pmcid: 7441381
doi: 10.1038/s41467-020-17374-3
Hocking LJ, Rivadeneira F. Stratified medicine approaches for the treatment of musculoskeletal disorders. Curr Opin Pharmacol. 2014;16:127–32.
pubmed: 24880767
doi: 10.1016/j.coph.2014.05.003
Kiel DP, Kemp JP, Rivadeneira F, Westendorf JJ, Karasik D, Duncan EL, et al. The musculoskeletal knowledge portal: making omics data useful to the broader scientific community. J Bone Miner Res. 2020;35(9):1626–33.
pubmed: 32777102
doi: 10.1002/jbmr.4147
Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N, Pretty FB, et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ. 2018;361:k1687.
pubmed: 29691228
doi: 10.1136/bmj.k1687
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–D12.
pubmed: 30445434
doi: 10.1093/nar/gky1120
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.
pubmed: 31068683
doi: 10.1038/s41576-019-0127-1
Shevroja E, Lamy O, Kohlmeier L, Koromani F, Rivadeneira F, Hans D. Use of trabecular bone score (TBS) as a complementary approach to dual-energy X-ray absorptiometry (DXA) for fracture risk assessment in clinical practice. J Clin Densitom. 2017;20(3):334–45.
pubmed: 28734710
doi: 10.1016/j.jocd.2017.06.019
Ireland A, Sayers A, Deere KC, Emond A, Tobias JH. Motor competence in early childhood is positively associated with bone strength in late adolescence. J Bone Miner Res. 2016;31(5):1089–98.
pubmed: 26713753
doi: 10.1002/jbmr.2775
Macdonald HM, Kontulainen SA, Mackelvie-O’Brien KJ, Petit MA, Janssen P, Khan KM, et al. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study. Bone. 2005;36(6):1003–11.
pubmed: 15823517
doi: 10.1016/j.bone.2004.12.007
Grgic O, Chung K, Shevroja E, Trajanoska K, Uitterlinden AG, Wolvius EB, et al. Fractures in school age children in relation to sex and ethnic background: The Generation R Study. Bone. 2019;121:227–31.
pubmed: 30677542
doi: 10.1016/j.bone.2019.01.019
Wren TA, Shepherd JA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, et al. Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr. 2012;161(6):1035–40.
pubmed: 22974572
pmcid: 3504618
doi: 10.1016/j.jpeds.2012.07.054
Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31.
pubmed: 30901543
pmcid: 7380073
doi: 10.1016/j.cell.2019.02.048
Yau MS, Kuipers AL, Price R, Nicolas A, Tajuddin SM, Handelman SK, et al. A meta-analysis of the transferability of bone mineral density genetic loci associations from European to African ancestry populations. J Bone Miner Res. 2020.
Márquez-Luna C, Loh PR, Price AL, Consortium SATDSD, Consortium STD. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet Epidemiol. 2017;41(8):811–23.
pubmed: 29110330
pmcid: 5726434
doi: 10.1002/gepi.22083
Vogiatzi MG, Macklin EA, Fung EB, Vichinsky E, Olivieri N, Kwiatkowski J, et al. Prevalence of fractures among the Thalassemia syndromes in North America. Bone. 2006;38(4):571–5.
pubmed: 16298178
doi: 10.1016/j.bone.2005.10.001
Wong SC, Catto-Smith AG, Zacharin M. Pathological fractures in paediatric patients with inflammatory bowel disease. Eur J Pediatr. 2014;173(2):141–51.
pubmed: 24132387
doi: 10.1007/s00431-013-2174-5
Dias Costa F, Maia C, Almeida S, Ferreira R. Child with multiple fractures: a rare presentation of a common disease. BMJ Case Rep. 2017;2017.