Targeted Protein Quantification Using Parallel Reaction Monitoring (PRM).
Calibration curve
Limit of quantification
Parallel reaction monitoring
Stable isotope-labeled synthetic peptides
Targeted proteomics
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
5
5
2021
pubmed:
6
5
2021
medline:
24
6
2021
Statut:
ppublish
Résumé
Targeted proteomics represents an efficient method to quantify proteins of interest with high sensitivity and accuracy. Targeted approaches were first established for triple quadrupole instruments, but the emergence of hybrid instruments allowing for high-resolution and accurate-mass measurements of MS/MS fragment ions enabled the development of parallel reaction monitoring (PRM). In PRM analysis, specific peptides are measured as representatives of proteins in complex samples, with the full product ion spectra being acquired, allowing for identification and quantification of the peptides. Ideally, corresponding stable isotope-labeled peptides are spiked into the analyzed samples to account for technical variation and enhance the precision. Here, we describe the development of a PRM assay including the selection of appropriate peptides that fulfill the criteria to serve as unique surrogates of the targeted proteins. We depict the sequential steps of method development and the generation of calibration curves. Furthermore, we present the open-access tool CalibraCurve for the determination of the linear concentration ranges and limits of quantification (LOQ).
Identifiants
pubmed: 33950489
doi: 10.1007/978-1-0716-1024-4_11
doi:
Substances chimiques
Proteins
0
Proteome
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
145-157Références
Barkovits K, Linden A, Galozzi S et al (2018) Characterization of cerebrospinal fluid via data-independent acquisition mass spectrometry. J Proteome Res 17(10):3418–3430. https://doi.org/10.1021/acs.jproteome.8b00308
doi: 10.1021/acs.jproteome.8b00308
pubmed: 30207155
Hoofnagle AN, Becker JO, Oda MN et al (2012) Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin Chem 58(4):777–781. https://doi.org/10.1373/clinchem.2011.173856
doi: 10.1373/clinchem.2011.173856
pubmed: 22307200
pmcid: 3665768
Peterson AC, Russell JD, Bailey DJ et al (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131
doi: 10.1074/mcp.O112.020131
pubmed: 22865924
Sherman J, McKay MJ, Ashman K et al (2009) How specific is my SRM?: the issue of precursor and product ion redundancy. Proteomics 9(5):1120–1123. https://doi.org/10.1002/pmic.200800577
doi: 10.1002/pmic.200800577
pubmed: 19253278
Duncan MW, Yergey AL, Patterson SD (2009) Quantifying proteins by mass spectrometry: the selectivity of SRM is only part of the problem. Proteomics 9(5):1124–1127. https://doi.org/10.1002/pmic.200800739
doi: 10.1002/pmic.200800739
pubmed: 19253279
pmcid: 4166569
Ronsein GE, Pamir N, von Haller PD et al (2015) Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J Proteome 113:388–399. https://doi.org/10.1016/j.jprot.2014.10.017
doi: 10.1016/j.jprot.2014.10.017
Hoffman MA, Fang B, Haura EB et al (2018) Comparison of quantitative mass spectrometry platforms for monitoring kinase ATP probe uptake in lung cancer. J Proteome Res 17(1):63–75. https://doi.org/10.1021/acs.jproteome.7b00329
doi: 10.1021/acs.jproteome.7b00329
pubmed: 29164889
Kohl M, Stepath M, Bracht T et al (2020) CalibraCurve: a tool for calibration of targeted MS-based measurements. Proteomics 22:e1900143. https://doi.org/10.1002/pmic.201900143
doi: 10.1002/pmic.201900143
Bracht T, Schweinsberg V, Trippler M et al (2015) Analysis of disease-associated protein expression using quantitative proteomics-fibulin-5 is expressed in association with hepatic fibrosis. J Proteome Res 14(5):2278–2286. https://doi.org/10.1021/acs.jproteome.5b00053
doi: 10.1021/acs.jproteome.5b00053
pubmed: 25807371
Rodriguez J, Gupta N, Smith RD et al (2008) Does trypsin cut before proline? J Proteome Res 7(1):300–305. https://doi.org/10.1021/pr0705035
doi: 10.1021/pr0705035
pubmed: 18067249
Perdivara I, Deterding LJ, Przybylski M et al (2010) Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins: chemical artifact or post-translational modification? J Am Soc Mass Spectrom 21(7):1114–1117. https://doi.org/10.1016/j.jasms.2010.02.016
doi: 10.1016/j.jasms.2010.02.016
pubmed: 20219394
pmcid: 2900464
Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794
doi: 10.1016/S0021-9258(19)75855-4
Hoofnagle AN, Whiteaker JR, Carr SA et al (2016) Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin Chem 62(1):48–69. https://doi.org/10.1373/clinchem.2015.250563
doi: 10.1373/clinchem.2015.250563
pubmed: 26719571
pmcid: 4830481
Taleb RSZ, Moez P, Younan D et al (2019) Protein biomarker discovery using human blood plasma microparticles. Methods Mol Biol 1959:51–64. https://doi.org/10.1007/978-1-4939-9164-8_4
doi: 10.1007/978-1-4939-9164-8_4
pubmed: 30852815
Percy AJ, Chambers AG, Yang J et al (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844(5):917–926. https://doi.org/10.1016/j.bbapap.2013.06.008
doi: 10.1016/j.bbapap.2013.06.008
pubmed: 23806606