Targeted Protein Quantification Using Parallel Reaction Monitoring (PRM).


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 5 5 2021
pubmed: 6 5 2021
medline: 24 6 2021
Statut: ppublish

Résumé

Targeted proteomics represents an efficient method to quantify proteins of interest with high sensitivity and accuracy. Targeted approaches were first established for triple quadrupole instruments, but the emergence of hybrid instruments allowing for high-resolution and accurate-mass measurements of MS/MS fragment ions enabled the development of parallel reaction monitoring (PRM). In PRM analysis, specific peptides are measured as representatives of proteins in complex samples, with the full product ion spectra being acquired, allowing for identification and quantification of the peptides. Ideally, corresponding stable isotope-labeled peptides are spiked into the analyzed samples to account for technical variation and enhance the precision. Here, we describe the development of a PRM assay including the selection of appropriate peptides that fulfill the criteria to serve as unique surrogates of the targeted proteins. We depict the sequential steps of method development and the generation of calibration curves. Furthermore, we present the open-access tool CalibraCurve for the determination of the linear concentration ranges and limits of quantification (LOQ).

Identifiants

pubmed: 33950489
doi: 10.1007/978-1-0716-1024-4_11
doi:

Substances chimiques

Proteins 0
Proteome 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

145-157

Références

Barkovits K, Linden A, Galozzi S et al (2018) Characterization of cerebrospinal fluid via data-independent acquisition mass spectrometry. J Proteome Res 17(10):3418–3430. https://doi.org/10.1021/acs.jproteome.8b00308
doi: 10.1021/acs.jproteome.8b00308 pubmed: 30207155
Hoofnagle AN, Becker JO, Oda MN et al (2012) Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin Chem 58(4):777–781. https://doi.org/10.1373/clinchem.2011.173856
doi: 10.1373/clinchem.2011.173856 pubmed: 22307200 pmcid: 3665768
Peterson AC, Russell JD, Bailey DJ et al (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131
doi: 10.1074/mcp.O112.020131 pubmed: 22865924
Sherman J, McKay MJ, Ashman K et al (2009) How specific is my SRM?: the issue of precursor and product ion redundancy. Proteomics 9(5):1120–1123. https://doi.org/10.1002/pmic.200800577
doi: 10.1002/pmic.200800577 pubmed: 19253278
Duncan MW, Yergey AL, Patterson SD (2009) Quantifying proteins by mass spectrometry: the selectivity of SRM is only part of the problem. Proteomics 9(5):1124–1127. https://doi.org/10.1002/pmic.200800739
doi: 10.1002/pmic.200800739 pubmed: 19253279 pmcid: 4166569
Ronsein GE, Pamir N, von Haller PD et al (2015) Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J Proteome 113:388–399. https://doi.org/10.1016/j.jprot.2014.10.017
doi: 10.1016/j.jprot.2014.10.017
Hoffman MA, Fang B, Haura EB et al (2018) Comparison of quantitative mass spectrometry platforms for monitoring kinase ATP probe uptake in lung cancer. J Proteome Res 17(1):63–75. https://doi.org/10.1021/acs.jproteome.7b00329
doi: 10.1021/acs.jproteome.7b00329 pubmed: 29164889
Kohl M, Stepath M, Bracht T et al (2020) CalibraCurve: a tool for calibration of targeted MS-based measurements. Proteomics 22:e1900143. https://doi.org/10.1002/pmic.201900143
doi: 10.1002/pmic.201900143
Bracht T, Schweinsberg V, Trippler M et al (2015) Analysis of disease-associated protein expression using quantitative proteomics-fibulin-5 is expressed in association with hepatic fibrosis. J Proteome Res 14(5):2278–2286. https://doi.org/10.1021/acs.jproteome.5b00053
doi: 10.1021/acs.jproteome.5b00053 pubmed: 25807371
Rodriguez J, Gupta N, Smith RD et al (2008) Does trypsin cut before proline? J Proteome Res 7(1):300–305. https://doi.org/10.1021/pr0705035
doi: 10.1021/pr0705035 pubmed: 18067249
Perdivara I, Deterding LJ, Przybylski M et al (2010) Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins: chemical artifact or post-translational modification? J Am Soc Mass Spectrom 21(7):1114–1117. https://doi.org/10.1016/j.jasms.2010.02.016
doi: 10.1016/j.jasms.2010.02.016 pubmed: 20219394 pmcid: 2900464
Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794
doi: 10.1016/S0021-9258(19)75855-4
Hoofnagle AN, Whiteaker JR, Carr SA et al (2016) Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin Chem 62(1):48–69. https://doi.org/10.1373/clinchem.2015.250563
doi: 10.1373/clinchem.2015.250563 pubmed: 26719571 pmcid: 4830481
Taleb RSZ, Moez P, Younan D et al (2019) Protein biomarker discovery using human blood plasma microparticles. Methods Mol Biol 1959:51–64. https://doi.org/10.1007/978-1-4939-9164-8_4
doi: 10.1007/978-1-4939-9164-8_4 pubmed: 30852815
Percy AJ, Chambers AG, Yang J et al (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844(5):917–926. https://doi.org/10.1016/j.bbapap.2013.06.008
doi: 10.1016/j.bbapap.2013.06.008 pubmed: 23806606

Auteurs

Katalin Barkovits (K)

Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.
Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany.

Weiqiang Chen (W)

Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.
Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany.

Michael Kohl (M)

Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.
Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany.

Thilo Bracht (T)

Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany. thilo.bracht@rub.de.
Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany. thilo.bracht@rub.de.
Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany. thilo.bracht@rub.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH