The ingenious mast cell: Contemporary insights into mast cell behavior and function.
Mast cells
allergy
anaphylaxis
animal models
asthma
inflammation
mastocytosis
urticaria
Journal
Allergy
ISSN: 1398-9995
Titre abrégé: Allergy
Pays: Denmark
ID NLM: 7804028
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
revised:
15
04
2021
received:
27
10
2020
accepted:
16
04
2021
pubmed:
7
5
2021
medline:
2
4
2022
entrez:
6
5
2021
Statut:
ppublish
Résumé
Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
83-99Informations de copyright
© 2021 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Références
Dahlin JS, Ekoff M, Grootens J, et al. KIT signaling is dispensable for human mast cell progenitor development. Blood. 2017;130(16):1785-1794.
Olivera A, Beaven MA, Metcalfe DD. Mast cells signal their importance in health and disease. J Allergy Clin Immunol. 2018;142(2):381-393.
McNeil BD, Pundir P, Meeker S, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237-241.
Elst J, Sabato V, Faber MA, et al. MRGPRX2 and immediate drug hypersensitivity: insights from cultured human mast cells. J Investig Allergol Clin Immunol. 2020; 31: Online ahead of print.
Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol. 2016;138(3):700-710.
Kühn K, Kolkhir P, Babina M, et al. Mas-related G protein-coupled receptor X2 and its activators in dermatological allergies. J Allergy Clin Immunol. 2021;147:456-469.
Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101(3):412-420.
Meixiong J, Anderson M, Limjunyawong N, et al. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity. 2019;50(5):1163-1171.
Dondalska A, Ronnberg E, Ma H, et al. Amelioration of compound 48/80-mediated itch and LL-37-induced inflammation by a single-stranded oligonucleotide. Front Immunol. 2020;11:559589.
Serhan N, Basso L, Sibilano R, et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol. 2019;20(11):1435-1443.
Lunderius-Andersson C, Enoksson M, Nilsson G. Mast cells respond to cell injury through the recognition of IL-33. Front Immunol. 2012;3:120-130.
Ohno T, Morita H, Arae K, Matsumoto K, Nakae S. Interleukin-33 in allergy. Allergy. 2012;67(10):1203-1214.
Babina M, Wang Z, Franke K, Guhl S, Artuc M, Zuberbier T. Yin-yang of IL-33 in human skin mast cells: reduced degranulation, but augmented histamine synthesis through p38 activation. J Invest Dermatol. 2019;139(7):1516-1525.
Ronnberg E, Ghaib A, Ceriol C, et al. Divergent effects of acute and prolonged interleukin 33 exposure on mast cell IgE-mediated functions. Front Immunol. 2019;10:1361.
Marshall JS, Portales-Cervantes L, Leong E. Mast cell responses to viruses and pathogen products. Int J Mol Sci. 2019;20(17):4241.
Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14(7):478-494.
Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev. 2007;217:168-185.
Kulinski JM, Munoz-Cano R, Olivera A. Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function. Eur J Pharmacol. 2016;778:56-67.
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121-150.
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:569.
Enoksson M, Lyberg K, Moller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C. Mast cells as sensors of cell injury through IL-33 recognition. J Immunol. 2011;186(4):2523-2528.
Pan D, Buchheit KM, Samuchiwal SK, et al. COX-1 mediates IL-33-induced extracellular signal-regulated kinase activation in mast cells: Implications for aspirin sensitivity. J Allergy Clin Immunol. 2019;143(3):1047-1057.
Fischer M, Harvima IT, Carvalho RFS, et al. Mast cell CD30 ligand is up-regulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Invest. 2006;116:2748-2756.
Al-Afif A, Alyazidi R, Oldford SA, et al. Respiratory syncytial virus infection of primary human mast cells induces the selective production of type I interferons, CXCL10, and CCL4. J Allergy Clin Immunol. 2015;136(5):1346-1354.
Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev. 2007;217:65-78.
Toyoshima S, Sakamoto-Sasaki T, Kurosawa Y, et al. miR103a-3p in extracellular vesicles from FcepsilonRI-aggregated human mast cells enhances IL-5 production by group 2 innate lymphoid cells. J Allergy Clin Immunol. 2021.147(5):1878-1891.
Skokos D, Le Panse S, Villa I, et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol. 2001;166(2):868-876.
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659.
Lecce M, Molfetta R, Milito ND, Santoni A, Paolini R. FcepsilonRI signaling in the modulation of allergic response: role of mast cell-derived exosomes. Int J Mol Sci. 2020;21(15):5464.
Kim DK, Cho YE, Komarow HD, et al. Mastocytosis-derived extracellular vesicles exhibit a mast cell signature, transfer KIT to stellate cells, and promote their activation. Proc Natl Acad Sci USA. 2018;115(45):E10692-E10701.
Siebenhaar F, Redegeld FA, Bischoff SC, Gibbs BF, Maurer M. Mast cells as drivers of disease and therapeutic targets. Trends Immunol. 2018;39(2):151-162.
Wilcock A, Bahri R, Bulfone-Paus S, Arkwright PD. Mast cell disorders: From infancy to maturity. Allergy. 2019;74(1):53-63.
Galli SJ, Gaudenzio N, Tsai M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Annu Rev Immunol. 2020;38:49-77.
Varricchi G, Marone G, Kovanen PT. Cardiac mast cells: underappreciated immune cells in cardiovascular homeostasis and disease. Trends Immunol. 2020;41(8):734-746.
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci. 2019;20(18):4397.
Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res. 2016;174:60-76.
Piliponsky AM, Acharya M, Shubin NJ. Mast cells in viral, bacterial, and fungal infection immunity. Int J Mol Sci. 2019;20(12):2851.
Jiao Q, Luo Y, Scheffel J, Zhao Z, Maurer M. The complex role of mast cells in fungal infections. Exp Dermatol. 2019;28(7):749-755.
Rathore AP, St John AL. Protective and pathogenic roles for mast cells during viral infections. Curr Opin Immunol. 2020;66:74-81.
Nathan C. Points of control in inflammation. Nature. 2002;420:846-852.
Dudeck A, Koberle M, Goldmann O, et al. Mast cells as protectors of health. J Allergy Clin Immunol. 2019;144(4S):S4-S18.
Sonoda T, Hayashi C, Kitamura Y. Presence of mast cell precursors in the yolk sac of mice. Dev Biol. 1983;97(1):89-94.
Li Z, Liu S, Xu J, et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity. 2018;49(4):640-653.
Gentek R, Ghigo C, Hoeffel G, et al. Hemogenic Endothelial fate mapping reveals dual developmental origin of mast cells. Immunity. 2018;48(6):1160-1171.
Nilsson G, Dahlin JS. New insights into the origin of mast cells. Allergy. 2019;74(4):844-845.
Kitamura Y, Shimada M, Hatanaka K, Miyano Y. Development of mast cells from grafted bone marrow cells in irradiated mice. Nature. 1977;268(5619):442-443.
Weitzmann A, Naumann R, Dudeck A, Zerjatke T, Gerbaulet A, Roers A. Mast cells occupy stable clonal territories in adult steady-state skin. J Invest Dermatol. 2020;140(12):2433-2441.
Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood. 1999;94(7):2333-2342.
Arinobu Y, Iwasaki H, Gurish MF, et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA. 2005;102(50):18105-18110.
Franco CB, Chen CC, Drukker M, Weissman IL, Galli SJ. Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell. 2010;6(4):361-368.
Tusi BK, Wolock SL, Weinreb C, et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 2018;555(7694):54-60.
Ahmed N, Kunz L, Hoppe PS, et al. A Novel GATA2 protein reporter mouse reveals hematopoietic progenitor cell types. Stem Cell Reports. 2020;15(2):326-339.
Inclan-Rico JM, Hernandez CM, Henry EK, et al. Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell. PLoS Pathog. 2020;16(5):e1008579.
Chen CC, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ. Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA. 2005;102(32):11408-11413.
Motakis E, Guhl S, Ishizu Y, et al. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood. 2014;123(17):e58-e67.
Grootens J, Ungerstedt JS, Nilsson G, Dahlin JS. Deciphering the differentiation trajectory from hematopoietic stem cells to mast cells. Blood Adv. 2018;2(17):2273-2281.
Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018;553(7689):418-426.
Dahlin JS, Hamey FK, Pijuan-Sala B, et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood. 2018;131(21):e1-e11.
Hamey FK, Lau WWY, Kucinski I, et al. Single-cell molecular profiling provides a high-resolution map of basophil and mast cell development. Allergy. 2021;76(6):1731-1742.
Qi X, Hong J, Chaves L, et al. Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity. 2013;39(1):97-110.
Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 2020;367(6479):eaaw3381.
Grootens J, Ungerstedt JS, Wu C, Hamberg Levedahl K, Nilsson G, Dahlin JS. CD203c distinguishes the erythroid and mast cell-basophil differentiation trajectories among human FcepsilonRI(+) bone marrow progenitors. Allergy. 2020;75(1):211-214.
Drissen R, Thongjuea S, Theilgaard-Monch K, Nerlov C. Identification of two distinct pathways of human myelopoiesis. Sci Immunol. 2019;4(35):eaau7148.
Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution. Nature. 2020;582(7813):571-576.
Popescu DM, Botting RA, Stephenson E, et al. Decoding human fetal liver haematopoiesis. Nature. 2019;574(7778):365-371.
Kocabas CN, Yavuz AS, Lipsky PE, Metcalfe DD, Akin C. Analysis of the lineage relationship between mast cells and basophils using the c-kit D816V mutation as a biologic signature. J Allergy Clin Immunol. 2005;115(6):1155-1161.
Irani AA, Nilsson G, Miettinen U, et al. Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells. Blood. 1992;80(3009):3009-3021.
Enerbäck L. Mast cells in rat gastrointestinal mucosa. i. effects of fixation. Acta Pathol Microbiol Scand. 1966;66:289-302.
Enerbäck L. Mast cells in rat gastrointestinal mucosa. II. Dye-binding and metachromatic properties. Acta Pathol Microbiol Scand. 1966;66:302-312.
Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA. 1986;83(4464):4464-4468.
Weidner N, Austen KF. Ultrastructural and Immunohistochemical Characterization Of Normal Mast Cells At Multiple Body Sites. J Invest Dermatology. 1991;96(3):S26-S31.
Lowman MA, Rees PH, Benyon RC, Church MK. Human mast cell heterogeneity: Histamine release from mast cells dispersed from skin, lung adenoids, tonsils, and colon in response to IgE-dependent and nonimmunologic stimuli. J Allergy Clin Immunol. 1988;81(590):590-597.
Bankova LG, Dwyer DF, Liu AY, Austen KF, Gurish MF. Maturation of mast cell progenitors to mucosal mast cells during allergic pulmonary inflammation in mice. Mucosal Immunol. 2015;8(3):596-606.
Derakhshan T, Samuchiwal SK, Hallen N, et al. Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. J Exp Med. 2021;218(1):e20200321.
Dwyer DF, Ordovas-Montanes J, Allon SJ, et al. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol. 2021;6(56):eabb7221.
Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS. Novel site-specific mast cell subpopulations in the human lung. Thorax. 2009;64:297-305.
Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS. Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181(3):206-217.
Maaninka K, Lappalainen J, Kovanen PT. Human mast cells arise from a common circulating progenitor. J Allergy Clin Immunol. 2013;132(2):463-469.
Dwyer DF, Barrett NA, Austen KF, The Immunological Genome Project Consortium. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016;17(7):878-887.
Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human mast cell proteome reveals unique lineage, putative functions, and structural basis for cell ablation. Immunity. 2020;52(2):404-416.
Dahlin JS, Malinovschi A, Ohrvik H, et al. Lin- CD34hi CD117int/hi FcepsilonRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood. 2016;127(4):383-391.
Gurish MF, Tao H, Abonia JP, et al. Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med. 2001;194(9):1243-1252.
Hallgren J, Gurish MF. Mast cell progenitor trafficking and maturation. Adv Exp Med Biol. 2011;716:14-28.
Salomonsson M, Dahlin JS, Ungerstedt J, Hallgren J. Localization-Specific Expression of CCR1 and CCR5 by Mast Cell Progenitors. Front Immunol. 2020;11:321.
Juremalm M, Nilsson G. Chemokine receptor expression by mast cells. Chem Immunol Allergy. 2005;87:130-144.
Halova I, Draberova L, Draber P. Mast cell chemotaxis-chemoattractants and signaling pathways. Front Immunol. 2012;3:119.
Nilsson G, Mikovits J, Metcalfe DD, Taub DD. Mast cell migratory response to IL-8 is mediated through interaction with chemokine receptor CXC-2/IL-8RB. Blood 1999;93:2791-2797.
Juremalm M, Hjertson M, Olsson N, Harvima I, Nilsson K, Nilsson G. The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand SDF-1a acts as a mast cell chemotaxin. Eur J Immunol. 2000;30:3614-3622.
Juremalm M, Olsson N, Nilsson G. Selective CCL5/RANTES-induced mast cell migration through interactions with chemokine receptors CCR1 and CCR4. Biochem Biophys Res Commun. 2002;297(3):480-485.
Taub D, Dastych J, Inamura N, et al. Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines. J Immunol. 1995;154:2393-2402.
Bischoff SC, Krieger M, Brunner T, et al. RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol. 1993;23:761-767.
Toda M, Dawson M, Nakamura T, et al. Impact of engagement of FceRI and CC chemokine receptor 1 on mast cell activation and motility. J Boil Chem. 2004;279(46):48443-48448.
Nguyen M, Solle M, Audoly LP, et al. Receptors and signaling mechanisms required for prostaglandin E2-mediated regulation of mast cell degranulation and IL-6 production. J Immunol. 2002;169(8):4586-4593.
Klein O, Krier-Burris RA, Lazki-Hagenbach P, et al. Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. J Allergy Clin Immunol. 2019;144(4):1074-1090.
Pickett JA, Edwardson JM. Compound exocytosis: mechanisms and functional significance. Traffic. 2006;7(2):109-116.
Gaudenzio N, Sibilano R, Marichal T, et al. Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest. 2016;126(10):3981-3998.
Dvorak AM. Ultrastructural studies of human basophils and mast cells. J Histoche Cytoche. 2005;53(9):1043-1070.
Friesen CA, Neilan N, Daniel JF, et al. Mast cell activation and clinical outcome in pediatric cholelithiasis and biliary dyskinesia. BMC Res Notes. 2011;4:322.
Vanheel H, Vicario M, Boesmans W, et al. Activation of eosinophils and mast cells in functional dyspepsia: an ultrastructural evaluation. Sci Rep. 2018;8(1):5383.
Crivellato E, Nico B, Vacca A, Ribatti D. Ultrastructural analysis of mast cell recovery after secretion by piecemeal degranulation in B-cell non-Hodgkin's lymphoma. Leuk Lymphoma. 2003;44(3):517-521.
Theoharides TC, Bondy PK, Tsakalos ND, Askenase PW. Differential release of serotonin and histamine from mast cells. Nature. 1982;297(5863):229-231.
Theoharides TC, Kops SK, Bondy PK, Askenase PW. Differential release of serotonin without comparable histamine under diverse conditions in the rat mast cell. Biochem Pharmacol. 1985;34(9):1389-1398.
Hepp R, Puri N, Hohenstein AC, Crawford GL, Whiteheart SW, Roche PA. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. The Journal of biological chemistry. 2005;280(8):6610-6620.
Azouz NP, Zur N, Efergan A, et al. Rab5 is a novel regulator of mast cell secretory granules: impact on size, cargo, and exocytosis. J Immunol. 2014;192(9):4043-4053.
Klein O, Roded A, Zur N, et al. Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Sci Rep. 2017;7(1):15315.
Blank U, Madera-Salcedo IK, Danelli L, et al. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol. 2014;5:453.
Vukman KV, Forsonits A, Oszvald A, Toth EA, Buzas EI. Mast cell secretome: soluble and vesicular components. Semin Cell Dev Biol. 2017;67:65-73.
Akin C, Valent P, Metcalfe DD. Mast cell activation syndrome: Proposed diagnostic criteria. J Allergy Clin Immunol. 2010;126(6):1099-1104.
Valent P, Akin C, Hartmann K, et al. Advances in the classification and treatment of mastocytosis: current status and outlook toward the future. Cancer Res. 2017;77(6):1261-1270.
Metcalfe DD, Gotlib J, et al. Systemic mastocytosis. In: Greer JP, Arber DA, Applebaum FR, (Eds.). Wintrobe’s Clinical Hematology. . 14th ed. Philadelphia: Wolters Kluwer; 2019: pp 1793-1808.
Boyden SE, Desai A, Cruse G, et al. Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med. 2016;374(7):656-663.
Lyons JJ, Yu X, Hughes JD, et al. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat Genet. 2016;48(12):1564-1569.
Robey RC, Wilcock A, Bonin H, et al. Hereditary alpha-tryptasemia: uk prevalence and variability in disease expression. J Allergy Clin Immunol Pract. 2020;8(10):3549-3556.
Lyons JJ, Chovanec J, O'Connell MP, et al. Heritable risk for severe anaphylaxis associated with increased alpha-tryptase-encoding germline copy number at TPSAB1. J Allergy Clin Immunol. 2021;147:622-632.
Greiner G, Sprinzl B, Gorska A, et al. Hereditary alpha tryptasemia is a valid genetic biomarker for severe mediator-related symptoms in mastocytosis. Blood. 2021;137(2):238-247.
Le QT, Lyons JJ, Naranjo AN, et al. Impact of naturally forming human alpha/beta-tryptase heterotetramers in the pathogenesis of hereditary alpha-tryptasemia. J Exp Med. 2019;216(10):2348-2361.
Valent P, Akin C, Bonadonna P, et al. Proposed diagnostic algorithm for patients with suspected mast cell activation syndrome. J Allergy Clin Immunol Pract. 2019;7(4):1125-1133.
Hallgren J, Hellman L, Maurer M, et al. Novel aspects of mast cell and basophil function: Highlights from the 9th meeting of the European Mast cell and Basophil Research Network (EMBRN)-a Marcus Wallenberg Symposium. Allergy. 2020;75(3):707-708.
Harvima IT, Levi-Schaffer F, Draber P, et al. Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol. 2014;134(3):530-544.
Church MK, Maurer M. Antihistamines. Chem Immunol Allergy. 2014;100:302-310.
Thurmond RL, Venable J, Savall B, et al. Clinical development of histamine H4 receptor antagonists. Handb Exp Pharmacol. 2017;241:301-320.
Maun HR, Jackman JK, Choy DF, et al. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell. 2019;179(2):417-431.
Pejler G. The emerging role of mast cell proteases in asthma. Eur Respir J. 2019;54(4):1900685.
Maurer M, Altrichter S, Schmetzer O, Scheffel J, Church MK, Metz M. Immunoglobulin E-mediated autoimmunity. Front Immunol. 2018;9:689.
Maurer M, Eyerich K, Eyerich S, et al. Urticaria: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol. 2020;181(5):321-333.
Altrichter S, Zampeli V, Ellrich A, Zhang K, Church MK, Maurer M. IgM and IgA in addition to IgG autoantibodies against FcvarepsilonRIalpha are frequent and associated with disease markers of chronic spontaneous urticaria. Allergy. 2020, 75(12):3208-3215.
Maurer M, Rosen K, Hsieh HJ, et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N Engl J Med. 2013;368(10):924-935.
Maurer M, Gimenez-Arnau AM, Sussman G, et al. Ligelizumab for chronic spontaneous urticaria. N Engl J Med. 2019;381(14):1321-1332.
Kolkhir P, Altrichter S, Munoz M, Hawro T, Maurer M. New treatments for chronic urticaria. Ann Allergy Asthma Immunol. 2020;124(1):2-12.
Bulfone-Paus S, Nilsson G, Draber P, Blank U, Levi-Schaffer F. Positive and negative signals in mast cell activation. Trends Immunol. 2017;38(9):657-667.
Schleimer RP, Schnaar RL, Bochner BS. Regulation of airway inflammation by siglec-8 and siglec-9 sialoglycan ligand expression. Curr Opin Allergy Clin Immunol. 2016;16(1):24-30.
Gonzalez-Gil A, Li TA, Porell RN, et al. Isolation, identification, and characterization of the human airway ligand for the eosinophil and mast cell immunoinhibitory receptor siglec-8. J Allergy Clin Immunol. 2021;147(4):1442-1452.
Valent P, Akin C, Hartmann K, et al. Mast cells, a unique hematologic lineage and cell system: from Paul Ehrlich to precision medicine. Theranostics. 2020;10(23):10743-10768.
Mueller N, Wicklein D, Eisenwort G, et al. CD44 is a RAS/STAT5-regulated invasion receptor that triggers disease expansion in advanced mastocytosis. Blood. 2018;132(18):1936-1950.
Rodewald HR, Feyerabend TB. Widespread immunological functions of mast cells: fact or fiction? Immunity 2012;37(1):13-24.
Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell functions in vivo. Trends Immunol. 2012;33(12):613-625.
Dudeck A, Dudeck J, Scholten J, et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity. 2011;34(6):973-984.
Feyerabend TB, Weiser A, Tietz A, et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity. 2011;35(5):832-844.
Lilla JN, Chen CC, Mukai K, et al. Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood. 2011;118(26):6930-6938.
Otsuka A, Kubo M, Honda T, et al. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One. 2011;6(9):e25538.
Dahdah A, Gautier G, Attout T, et al. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest. 2014;124(10):4577-4589.
Luo Y, Meyer N, Jiao Q, et al. Chymase-Cre; Mcl-1(fl/fl) mice exhibit reduced numbers of mucosal mast cells. Front Immunol. 2019;10:2399.
Hoppe A, Katsoulis-Dimitriou K, Edler HJ, Dudeck J, Drube S, Dudeck A. Mast cells initiate the vascular response to contact allergens by sensing cell stress. J Allergy Clin Immunol. 2020;145(5):1476-1479.
Ohrvik H, Grujic M, Waern I, et al. Mast cells promote melanoma colonization of lungs. Oncotarget. 2016;7(42):68990-69001.
Rabenhorst A, Schlaak M, Heukamp LC, et al. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood. 2012;120(10):2042-2054.
Schubert N, Dudeck J, Liu P, et al. Mast cell promotion of T cell-driven antigen-induced arthritis despite being dispensable for antibody-induced arthritis in which T cells are bypassed. Arthritis Rheumatol. 2015;67(4):903-913.
Kroner J, Kovtun A, Kemmler J, et al. Mast cells are critical regulators of bone fracture-induced inflammation and osteoclast formation and activity. J Bone Miner Res. 2017;32(12):2431-2444.
Ramirez-GarciaLuna JL, Chan D, Samberg R, et al. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS One. 2017;12(3):e0174396.
Wang Q, Lepus CM, Raghu H, et al. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. Elife. 2019;8:e39905.
Yu M, Mukai K, Tsai M, Galli SJ. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immunol. 2018;142(5):1618-1627.
Zimmermann C, Troeltzsch D, Gimenez-Rivera VA, et al. Mast cells are critical for controlling the bacterial burden and the healing of infected wounds. Proc Natl Acad Sci USA. 2019;116(41):20500-20504.
Jiao Q, Luo Y, Scheffel J, et al. Skin mast cells contribute to Sporothrix schenckii infection. Front Immunol. 2020;11:469.
Gutierrez DA, Muralidhar S, Feyerabend TB, Herzig S, Rodewald HR. Hematopoietic kit deficiency, rather than lack of mast cells, protects mice from obesity and insulin resistance. Cell Metab. 2015;21(5):678-691.
Mencarelli A, Gunawan M, Yong KSM, et al. A humanized mouse model to study mast cells mediated cutaneous adverse drug reactions. J Leukoc Biol. 2020;107(5):797-807.
Bryce PJ, Falahati R, Kenney LL, et al. Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol. 2016;138(3):769-779.
Burton OT, Stranks AJ, Tamayo JM, Koleoglou KJ, Schwartz LB, Oettgen HC. A humanized mouse model of anaphylactic peanut allergy. J Allergy Clin Immunol. 2017;139(1):314-322.
Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA, Bochner BS. Bruton's tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Invest. 2020;130(9):4759-4770.
Pejler G. Novel Insight into the in vivo function of mast cell chymase: lessons from knockouts and inhibitors. J Innate Immun. 2020;12(5):357-372.
Ehrlich P. Beiträge zur Theorie und Praxis der Histologischen Färbung. Leipzig: Leipzig University; 1878.
Jorpes JE, Holmgren H, Wilander O. Über das Vorkommen von Heparin in den Gefäßwänden und in den Augen. Ztschr mikr-anat Forsch. 1937;42:279-301.
Holmgren H, Wilander O. Beitrag zur Kenntnis der Chemie und Funktion der Ehrlichschen Mastzellen. Ztschr mikr-anat Forsch. 1937;42:242-278.
Ellis JM. Urticaria pigmentosa; a report of a case with autopsy. Arch Pathol (Chic). 1949;48(5):426-435.
Riley JF, West GB. The presence of histamine in tissue mast cells. J Physiol (London). 1953;120:528-537.
Mota I, Vugman I. Effects of anaphylactic shock and compound 48/80 on the mast cells of the guinea pig lung. Nature. 1956;177(4505):427-429.
Ishizaka K, Ishizaka T, Hornbrook MM. Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity with gamma-E-globulin antibody. J Immunol. 1966;97(6):840-853.
Johansson SG, Bennich H. Immunological studies of an atypical (myeloma) immunoglobulin. Immunology. 1967;13(4):381-394.
Bennich HH, Ishizaka K, Johansson SG, Rowe DS, Stanworth DR, Terry WD. Immunoglobulin E: a new class of human immunoglobulin. Immunology. 1968;15(3):323-324.
Ishizaka T, Ishizaka K, Orange RP, Austen KF. The capacity of human immunoglobulin E to mediate the release of histamine and slow reacting substance of anaphylaxis (SRS-A) from monkey lung. J Immunol. 1970;104(2):335-343.
Ishizaka T, Ishizaka K, Tomioka H. Release of histamine and slow reacting substance of anaphylaxis (SRS-A) by IgE-anti-IgE reactions on monkey mast cells. J Immunol. 1972;108(2):513-520.
Schwartz LB, Lewis RA, Austen KF. Tryptase from human pulmonary mast cells: Purification and characterization. J Biol Chem. 1981;256(11939):11939-11943.
Schwartz LB, Lewis RA, Seldin D, Austen KF. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol. 1981;126:1290-1294.
Lewis RA, Soter NA, Diamond PT, et al. Prostaglandin D2 generation after sactivation of rat and human mast cells with anti-IgE. J Immunol. 1982;129(4):1627-1631.
Brown MA, Pierce JH, Watson CJ, Falco J, Ihle JN, Paul WE. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell. 1987;50:809-818.
Young J-E, Liu C-C, Butler G, Cohn ZA, Galli SJ. Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor. Proc Natl Acad Sci USA. 1987;84:9175-9179.
Blank U, Ra C, Miller L, White K, Metzger H, Kinet JP. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature. 1989;337(6203):187-189.
Miller L, Blank U, Metzger H, Kinet JP. Expression of high-affinity binding of human immunoglobulin E by transfected cells. Science. 1989;244(4902):334-337.
MacQueen G, Marshall J, Perdue M, Siegel S, Bienenstock J. Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease II. Science. 1989;243(4887):83-85.
Witte ON. Steel locus defines new multipotent growth factor. Cell. 1990;63(1):5-6.
Kirshenbaum AS, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe DD. Effect of IL-3 and stem cell factor on the apperance of human basophils and mast cells from CD34+ pluripotent progenitor cells. J Immunol. 1992;148:772-777.
Valent P, Spanblöchl E, Sperr WR, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood. 1992;80(2237):2237-2245.
Mitsui H, Furitsu T, Dvorak AM, et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci USA. 1993;90(735):735-739.
Nagata H, Worobec AS, Oh CK, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA. 1995;92:10560-10564.
Maurer M, Wedemeyer J, Metz M, et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature. 2004;432(7016):512-516.
Metz M, Piliponsky AM, Chen CC, et al. Mast cells can enhance resistance to snake and honeybee venoms. Science. 2006;313(5786):526-530.
Saluja R, Zoltowska A, Ketelaar ME, Nilsson G. IL-33 and Thymic Stromal Lymphopoietin in mast cell functions. Eur J Pharmacol. 2016;778:68-76.