Studies of the potential of a native natural biosorbent for the elimination of an anionic textile dye Cibacron Blue in aqueous solution.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 05 2021
06 05 2021
Historique:
received:
05
09
2020
accepted:
23
12
2020
entrez:
7
5
2021
pubmed:
8
5
2021
medline:
8
5
2021
Statut:
epublish
Résumé
This work is devoted to the adsorption of Cibacron Blue (CB) an anionic textile dye, on bean peel (BP) an agricultural waste with neither activation nor carbonization. The adsorption was realized in batch configuration at ambient temperature in acidic medium. The adsorbent was characterized by FTIR, SEM and BET analyses; the equilibrium isotherms and kinetics were also studied. It has been found that this waste could be used as a low-cost biosorbent for CB elimination under optimal working conditions. The rate of CB elimination reaches 95% on bean bark (3.6 g/L) at pH 2.2 and a reject concentration of 25 mg/L. The pseudo-second-order describes suitably the experimental data and the external diffusion is the rate-determining step. The Freundlich isotherm fits better the CB adsorption with a correlation coefficient (R
Identifiants
pubmed: 33958626
doi: 10.1038/s41598-021-88657-y
pii: 10.1038/s41598-021-88657-y
pmc: PMC8102514
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9705Références
Alavi, N. et al. Watequality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalin. Water Treat. 57, 23686–23697 (2016).
doi: 10.1080/19443994.2015.1137786
Wang, N., Chu, Y., Wu, F., Zhao, Z. & Xu, X. Decolorization and degradation of Congo Reed by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int. Biodeterior. Biodegrad. 117, 236–244 (2017).
doi: 10.1016/j.ibiod.2016.12.015
Forgacs, E., Cserhati, T. & Oros, G. Removel of synthetic dyes from wastewaters. A review. Environ. Int. 30, 953–971 (2004).
doi: 10.1016/j.envint.2004.02.001
Rai, H. S. et al. Removal of dyes from the effluent of textile and dyestuff manufacturing industry. Crit. Rev. Sci. Technol. 35, 219–238 (2005).
doi: 10.1080/10643380590917932
Liu, M. et al. High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Sep. Purif. Technol. 173, 135–143 (2017).
doi: 10.1016/j.seppur.2016.09.023
Maleki, A., Mahvi, A. H., Ebrahimi, R. & Zandsalimi, Y. Study of photochemical and sonochemical processes efficiency for degradation of dyes in aqueous solution. Korean J. Chem. Eng. 27, 1805–1810 (2010).
doi: 10.1007/s11814-010-0261-0
Tsuda, S., Matsusaka, N. & Madarame, H. the comet assay in eight mouse organs: Result with 24 azo compounds. Mutat. Res. 465, 11–26 (2000).
doi: 10.1016/S1383-5718(99)00199-0
Guan, W. & Tian, S. C. The modified chitosan for dyeing wastewater treatment via adsorption and flocculation. Sci. Adv. Mater. 9, 1603–1609 (2017).
doi: 10.1166/sam.2017.3156
Rosales, E., Meijide, J., Pazos, M. & Sanromán, M. A. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresour. Technol. 246, 176–192 (2017).
doi: 10.1016/j.biortech.2017.06.084
Janssens, R., Mandal, M. K., Dubey, K. K. & Luis, P. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination. Sci. Total. Environ. 599–600, 612–626 (2017).
doi: 10.1016/j.scitotenv.2017.03.253
Lemlikchi, W., Khaldi, S., Mecherri, M. O., Lounici, H. & Drouiche, N. Degradation of disperse red 167 azo dye by bipolar electrocoagulation. J. Sep. Sci. Technol. 47, 1682–1688 (2012).
doi: 10.1080/01496395.2011.647374
Sarasidis, V. C., Plakas, K. V. & Karabelas, A. J. Novel water-purification hybrid processes involving in-situ regenerated activated carbon, membrane separation and advanced oxidation. Chem. Eng. J. 328, 1153–2116 (2017).
doi: 10.1016/j.cej.2017.07.084
Degermenci, N. & Akyol, K. Decolorization of the reactive blue 19 from aqueous solution with the Fenton oxidation process and modeling with deep neural networks. Water Air Soil Pullut. 231, 72 (2020).
doi: 10.1007/s11270-020-4402-8
Moran, C., Hall, M. E. & Howell, R. C. Effects of sewage treatment on textile efluent. J. Soc. Dyers. Colour. 113, 272–274 (1997).
doi: 10.1111/j.1478-4408.1997.tb01847.x
López-Cabeza, R., Gámiz, B., Cornejo, J. & Celis, R. Behavior of the enantiomers of the herbicide imazaquin in agricultural soils under different application regimes. Geoderma 293, 64–72 (2017).
doi: 10.1016/j.geoderma.2017.01.024
Ahmed, M. J. & Dhedan, S. K. Equilibrium isotherms and kinectics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase. Equilib. 317, 9–14 (2012).
doi: 10.1016/j.fluid.2011.12.026
Li, X., Tang, Y., Xuan, Z., Liu, Y. & Luo, F. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd
doi: 10.1016/j.seppur.2006.10.025
Aman, T., Kazi, A. A., Sabri, M. U. & Bano, Q. Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids Surf. B Biointerfaces. 63, 116–121 (2008).
doi: 10.1016/j.colsurfb.2007.11.013
Moghadam, M. R., Nasirizadeh, N., Dashti, Z. & Babanezhad, E. Removal of Fe (II) from aqueous solution using pomegranate peel carbon: Equilibrium and kinetic studies. Int. J. Ind. Chem. 4, 1–6 (2013).
doi: 10.1186/2228-5547-4-19
Aygun, A., Yenisoy-Karakas, S. & Duman, I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 66, 189–195 (2003).
doi: 10.1016/j.micromeso.2003.08.028
Annadurai, G., Juang, R. S. & Lee, D. J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92, 263–274 (2002).
doi: 10.1016/S0304-3894(02)00017-1
Valix, M., Cheung, W. H. & McKay, G. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 56, 493–501 (2004).
doi: 10.1016/j.chemosphere.2004.04.004
Bello, O. S. & Ahmad, M. A. Adsorptive removal of a synthetic textile dye using coca pod husks. Toxicol. Environ. Chem. 93, 1298–1308 (2011).
doi: 10.1080/02772248.2011.590490
Palma, C., Lloret, L., Puen, A., Tobar, M. & Contreras, E. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chin. J. Chem. Eng. 24, 521–528 (2016).
doi: 10.1016/j.cjche.2015.11.029
Tsai, W. T. et al. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl
doi: 10.1016/S0045-6535(01)00016-9
Gisi, S. D., Lofrane, G., Grassi, M. & Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 9, 10–40 (2016).
Demeestere, K., Alex, D. V., Dewulf, J., Van Leeuwen, M. & Van Langenhove, H. A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase. Appl. Catal. B 54, 261–274 (2004).
doi: 10.1016/j.apcatb.2004.06.020
Abo El-Reesh, G. Y., Farghali, A. A., Taha, M. & Rehab, K. M. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Sci. Rep. 10, 587 (2020).
doi: 10.1038/s41598-020-57519-4
Rita Giovannetti, R., Rommozzi, E., D’Amato, C. A. & Zannotti, M. Kinetic model for simultaneous adsorption/photodegradation process of alizarin red S in water solution by nano-TiO
doi: 10.3390/catal6060084
Altenor, S. et al. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J. Hazard. Mater. 165, 1029–1039 (2009).
doi: 10.1016/j.jhazmat.2008.10.133
Hui, Q. et al. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 10, 716–724 (2009).
doi: 10.1631/jzus.A0820524
Tavlieva, M. P., Genieva, S. D., Georgieva, V. G. & Vlaev, L. T. Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. J. Colloid Interface Sci. 409, 112–122 (2013).
doi: 10.1016/j.jcis.2013.07.052
Ho, Y. S., Ngj, Y. & McKay, G. Kinetics of polluant sorption by biosorbents. Sep. Purif. Methods 29, 189–232 (2000).
doi: 10.1081/SPM-100100009
Ho, Y. S. Second order kenitec model for the sorption of cadmium onto three fern: A comparison of model linear and non-linear methods. Water Res. 40, 119–125 (2006).
doi: 10.1016/j.watres.2005.10.040
Wu, F. C., Tseng, R. L. & Juang, R. S. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water. Res. 35, 613–618 (2001).
doi: 10.1016/S0043-1354(00)00307-9
Tran, H. N., You, S. J., Bandegharaei, A. H. & Chao, H. P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions. A critical review. Water Res. 120, 88–116 (2017).
doi: 10.1016/j.watres.2017.04.014
Hall, K. L., Eagleton, L. C., Acrivos, A. & Vermeulen, T. Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundam. 5, 212–223 (1966).
doi: 10.1021/i160018a011
Laksaci, H., Khelifi, A., Trari, M. & Addoun, A. Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. J. Clean. Prod. 147, 254–262 (2017).
doi: 10.1016/j.jclepro.2017.01.102
Delle Site, A. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. Ref. Data. 30, 187–439 (2001).
doi: 10.1063/1.1347984
Ozcan, A. S., Erdem, B. & Ozcan, A. Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite. Colloids Surf. A Physicochem. Eng. Aspects. 266, 73–81 (2005).
doi: 10.1016/j.colsurfa.2005.06.001
Murugesan, A. et al. An eco-friendly porous poly (imide-ether) for the efficient removal of methylene blue: Adsorption kinetics, isotherm, thermodynamics and reuse performances. J. Polym. Environ. 27(3), 1007–1024. https://doi.org/10.1007/s10924-019-01408-z (2019).
doi: 10.1007/s10924-019-01408-z
Köseoğlu, E. & Akmil-Başar, C. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 26(3), 811–818 (2015).
doi: 10.1016/j.apt.2015.02.006
Jawad, A. H., Ramlah, A. R., Mohd Azlan, M. I. & Khudzir, I. Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels. J. Taibah Univ. Sci. 12(6), 809–819 (2018).
doi: 10.1080/16583655.2018.1519893
Farinella, N. V., Matos, G. D. & Arruda, M. A. Z. Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour. Technol. 98, 1940–1946 (2007).
doi: 10.1016/j.biortech.2006.07.043
Leyva-Ramos, R., Landin-Rodriguez, L. E., Leyva-Ramos, S. & Medellin-Castillo, N. A. Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium (II) from water solution. Chem. Eng. J. 180, 113–120 (2012).
doi: 10.1016/j.cej.2011.11.021
Dogana, A., Özkaraa, S., Sarı, M. M., Uzun, L. & Denizli, A. Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system. J. Chromatogr B. 893–894, 69–76 (2012).
doi: 10.1016/j.jchromb.2012.02.036
Basar, N., Uzun, L., Güner, A. & Denizli, A. Spectral characterization of lysozyme adsorption on dye-affinity beads. J. Appl. Polym. Sci. 108, 3454–3461 (2008).
doi: 10.1002/app.27972
de Salomón, O. Y. L. et al. Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environ. Sci. Pollut. Res. 27, 33307–33320 (2020).
doi: 10.1007/s11356-020-09471-z
Georgin, J. et al. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ. Sci. Pollut. Res. 27, 20831–20843 (2020).
doi: 10.1007/s11356-020-08496-8
Borthakur, P. et al. Experimental and molecular dynamics simulation study of specific ion effect on the graphene oxide surface and investigation of the influence on reactive extraction of model dye molecule at water-organic interface. J. Phys. Chem. C. 120, 14088–14100 (2016).
doi: 10.1021/acs.jpcc.6b02787
Meyer, E. E., Rosenberg, K. J. & Israelachvili, J. Recent progress in understanding hydrophobicinteractions. Proc. Natl. Acad. Sci. U. S. A. 103, 15739–15746 (2006).
doi: 10.1073/pnas.0606422103
Eissa, A. S., Khan, S. A. Modulation of hydrophobic interactions in denatured whey proteins by transglutaminase enzyme. Food Hydrocolloids Part Spec. Issue WCFS Food Summit. 20, 543–547 (2006).
Akpomie, K. G. & Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ. Chem. Lett. 18, 1085–1112 (2020).
doi: 10.1007/s10311-020-00995-x
Michelsen, D. L., Gideon, J. A., Griffith, G. P., Pace, J. E. & Kutat, H. L. Removal of soluble mercury from waste water by complexing techniques. Bull. Water Resour. Res. Cent. Va. Polytech. Inst. State Univ. (1975).
Anderson, K., Norgren, M., Eriksson, M. Lignin removal from wastewater by adsorption. Int. Mech. Pulp. Conf. Artic. 280–285 (2009).
Ferreira, R. M. et al. Adsorption of indigo carmine on pistia strateriotes dry biomass chemically modified. Environ. Sci. Pollut. Res. 26, 28614–28621 (2019).
doi: 10.1007/s11356-018-3752-x
Jawad, A. H. & Abdulhameed, A. S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. J. Surf. Interfaces 18, 100422 (2020).
doi: 10.1016/j.surfin.2019.100422
Kumar, A. K., Mohan, S. V. & Sarma, P. N. Sorptive removal of endocrine-disruptive compound (estriol, E3) from aqueous phase by batch and column studies: Kinetic and mechanistic evaluation. J. Hazard. Mater. 164, 820–828 (2009).
doi: 10.1016/j.jhazmat.2008.08.075
Hameed, B. H. & Ahmad, A. A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164(2–3), 870–875. https://doi.org/10.1016/j.jhazmat.2008.08.084 (2009).
doi: 10.1016/j.jhazmat.2008.08.084
Guo, D.-D., Li, Bo., Deng, Z.-P., Huo, L.-H. & Gao, S. Ladder chain Cd-based polymer as a highly effective adsorbent for removal of Congo red. Ecotoxicol. Environ. Saf. 178, 221–229 (2019).
doi: 10.1016/j.ecoenv.2019.04.042
Tran, H. N. & Sheng-Jie, Y. Tien Vinh Nguyen, and Huan-Ping Chao, Insight into adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem. Eng. Commun. 9, 204 (2017).
Essandoh, M., Kunwar, B., Pittman, C. U., Mohan, D. & Mlsna, T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219–227 (2015).
doi: 10.1016/j.cej.2014.12.006
Keerthanan, S., Rajapaksha, S. M., Trakal, L. & Vithanage, M. Caffeine removal by Gliricidia sepium biochar: Influence of pyrolysis temperature and physicochemical properties. Environ. Res. 189, 109865 (2020).
doi: 10.1016/j.envres.2020.109865
Jiang, X. et al. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids Surfaces A Physicochem. Eng. Asp. 547, 64–72 (2018).
doi: 10.1016/j.colsurfa.2018.03.041
Berg, J. M., Tymoczko, J. L., Stryer, L. Chemical bonds in biochemistry (2002).