Optimizing Comprehensive Performance of Aggregation-Induced Emission Nanoparticles through Molecular Packing Modulation for Multimodal Image-Guided Synergistic Phototherapy.

aggregation-induced emission cancer phototheranostics effective π-conjugation nanoparticles packing modes

Journal

Advanced healthcare materials
ISSN: 2192-2659
Titre abrégé: Adv Healthc Mater
Pays: Germany
ID NLM: 101581613

Informations de publication

Date de publication:
12 2021
Historique:
revised: 23 04 2021
received: 25 02 2021
pubmed: 8 5 2021
medline: 11 1 2022
entrez: 7 5 2021
Statut: ppublish

Résumé

Fluorescent nanoparticles (NPs) with aggregation-induced emission (AIE) characteristics hold remarkable potential for image-guided phototherapy. The molecular packing is the key point for optimizing the performance of AIE luminogens (AIEgens) in the aggregated or solid state. However, so far, the packing mode of AIEgens in NPs is still vague, causing some challenges for understanding the relationship between the photophysical property and packing mode, as well as further optimizing the performance of NPs for biomedical applications. In this contribution, by simply controlling the length of alkoxy chains in the donor-acceptor conjugated OPTPA, a packing balance between the twisted molecular structure and effective π-conjugation is actualized. Subsequently, the possibility of amorphous-crystalline transition of AIEgens in the polymer-encapsulated NPs is presented for the first time, and the comprehensive performance of NPs is further optimized. Both in vitro and in vivo experiments indicate that crystalline AIEgen-based NPs are remarkably effective in trimodal imaging-guided synergistic phototherapy.

Identifiants

pubmed: 33960129
doi: 10.1002/adhm.202100360
doi:

Substances chimiques

Fluorescent Dyes 0
Polymers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100360

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

a) Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16;
b) C. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, J. Am. Chem. Soc. 2020, 142, 14789.
a) S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, Biomaterials 2011, 32, 7127;
b) M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey, Chem. Soc. Rev. 2011, 40, 340.
a) J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London 1970, p. 528;
b) C. W. Tang, S. A. V. anslyke, Appl. Phys. Lett. 1987, 51, 913.
a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 18, 1740;
b) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718;
c) F. Hu, S. Xu, B. Liu, Adv. Mater. 2018, 30, 1801350;
d) G. Feng, B. Liu, Acc. Chem. Res. 2018, 51, 1404;
e) X. Cai, B. Liu, Angew. Chem., Int. Ed. 2020, 59, 9868;
f) D. Wang, M. M. S. Lee, W. Xu, G. Shan, X. Zheng, R. T. K. Kwok, J. W. Y. Lam, X. Hu, B. Z. Tang, Angew. Chem., Int. Ed. 2019, 58, 5628;
g) H. Cao, Y. Yang, J. Li, Aggregate 2020, 1, 69.
a) A. Ajayaghosh, Chem. Soc. Rev. 2003, 32, 181;
b) S. Xu, Y. Duan, B. Liu, Adv. Mater. 2020, 32, 1903530;
c) W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494.
a) M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 2000, 122, 5147;
b) B.-K. An, S.-K. Kwon, S.-D. Jung, S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410;
c) J. Dong, K. M. Solntsev, L. M. Tolbert, J. Am. Chem. Soc. 2009, 131, 662;
d) X. Gu, J. Yao, G. Zhang, Y. Yan, C. Zhang, Q. Peng, Q. Liao, Y. Wu, Z. Xu, Y. Zhao, H. Fu, D. Zhang, Adv. Funct. Mater. 2012, 22, 4862;
e) N. Li, Y. Y. Liu, Y. Li, J. B. Zhuang, R. R. Cui, Q. Gong, N. Zhao, B. Z. Tang, ACS Appl. Mater. Interfaces 2018, 10, 24249;
f) Q. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962.
a) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653;
b) K. Li, B. Liu, Chem. Soc. Rev. 2014, 43, 6570;
c) S. Chen, H. Wang, Y. Hong, B. Z. Tang, Mater. Horiz. 2016, 3, 283.
a) W. Wu, D. Mao, S. Xu, Kenry, F. H.u, X. Li, D. Kong, B. Liu, Chem 2018, 4, 1937;
b) S. Liu, H. Zhang, Y. Li, J. Liu, L. Du, M. Chen, R. T. K. Kwok, J. W. Y. Lam, D. L. Phillips, B. Z. Tang, Angew. Chem., Int. Ed. 2018, 57, 15189;
c) J. Qi, C. Chen, D. Ding, B. Z. Tang, Adv. Healthcare Mater. 2018, 7, 1800477;
d) M. Kang, Z. Zhang, N. Song, M. Li, P. Sun, X. Chen, D. Wang, B. Z. Tang, Aggregate 2020, 1, 80.
J. Qi, C. Sun, D. Li, H. Zhang, W. Yu, A. Zebibula, J. W. Y. Lam, W. Xi, L. Zhu, F. Cai, P. Wei, C. Zhu, R. T. K. Kwok, L. L. Streich, R. Prevedel, J. Qian, B. Z. Tang, ACS Nano 2018, 12, 7936.
S. M. A. Fateminia, Z. Wang, C. C. Goh, P. N. Manghnani, W. Wu, D. Mao, L. G. Ng, Z. Zhao, B. Z. Tang, B. Liu, Adv. Mater. 2017, 29, 1604100.
a) Y. Wang, N. Gong, Y. Li, Q. Lu, X. Wang, J. Li, J. Am. Chem. Soc. 2020, 142, 1735;
b) X. Zhao, S. Long, M. Li, J. Cao, Y. Li, L. Guo, W. Sun, J. Du, J. Fan, X. Peng, J. Am. Chem. Soc. 2020, 142, 1510;
c) X. Mu, Y. Lu, F. Wu, Y. Wei, H. Ma, Y. Zhao, J. Sun, S. Liu, X. Zhou, Z. Li, Adv. Mater. 2020, 32, 1906711.
a) D. Wang, M. M. S. Lee, G. Shan, R. T. K. Kwok, J. W. Y. Lam, H. Su, Y. Cai, B. Z. Tang, Adv. Mater. 2018, 30, 1802105;
b) D. Chen, Z. Wang, H. Dai, X. Lv, Q. Ma, D.-P. Yang, J. Shao, Z. Xu, X. Dong, Small Methods 2020, 4, 2000013.
H. Lu, Y. Zheng, X. Zhao, L. Wang, S. Ma, X. Han, B. Xu, W. Tian, H. Gao, Angew. Chem., Int. Ed. 2016, 55, 155.
a) J. Qi, C. Sun, A. Zebibula, H. Zhang, R. T. K. Kwok, X. Zhao, W. Xi, J. W. Y. Lam, J. Qian, B. Z. Tang, Adv. Mater. 2018, 30, 1706856;
b) W. Wu, D. Mao, S. Xu, M. Panahandeh-Fard, Y. Duan, F. Hu, D. Kong, B. Liu, Adv. Funct. Mater. 2019, 29, 1901791;
c) Y. Li, X. Wang, L. Zhang, L. Liu, Q. Wang, H. Lu, X. Zhao, Mater. Chem. Front. 2020, 4, 3378.
a) Z. Zhao, C. Chen, W. Wu, F. Wang, F. L. Du, X. Zhang, Y. Xiong, X. He, Y. Cai, R. T. K. Kwok, J. W. Y. Lam, X. Gao, P. Sun, D. L. Phillips, D. Ding, B. Z. Tang, Nat. Commun. 2019, 10, 768;
b) S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 5359.
S. l. M. Shishido, A. B. Seabra, W. Loh, M. Ganzarolli de Oliveira, Biomaterials 2003, 24, 3543.
a) D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380;
b) Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev. 2016, 45, 6597;
c) Y. Guan, H. Lu, W. Li, Y. Zheng, Z. Jiang, J. Zou, H. Gao, ACS Appl. Mater. Interfaces 2017, 9, 26731.
B. Nikoobakht, J. Wang, M. A. El-Sayed, Chem. Phys. Lett. 2002, 366, 17.
Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, ACS Nano 2011, 5, 9761.
a) Z. Zhang, W. Xu, M. Kang, H. Wen, H. Guo, P. Zhang, L. Xi, K. Li, L. Wang, D. Wang, B. Z. Tang, Adv. Mater. 2020, 32, 2003210;
b) W. Xu, Z. Zhang, M. Kang, H. Guo, Y. Li, H. Wen, M. M. S. Lee, Z. Wang, R. T. K. Kwok, J. W. Y. Lam, K. Li, L. Xi, S. Chen, D. Wang, B. Z. Tang, ACS Mater. Lett. 2020, 2, 1033.
N. T. Huynh, E. Roger, N. Lautram, J.-P. Benoît, C. Passirani, Nanomedicine 2010, 5, 1415.
L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chem. Rev. 2014, 114, 10869.
J. Weber, P. C. Beard, S. E. Bohndiek, Nat. Methods 2016, 13, 639.

Auteurs

Xian Wang (X)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Luqi Liu (L)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Li-Juan Wang (LJ)

School of Materials Science and Engineering, Harbin Institute of Technology, Weihai, 264209, China.

Lianqin Guo (L)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Yanbin Li (Y)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Bing Bai (B)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Fan Fu (F)

Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.

Hongguang Lu (H)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Xiaowei Zhao (X)

Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Animals Huntington Disease Mitochondria Neurons Mice
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Classifications MeSH