Optimizing Comprehensive Performance of Aggregation-Induced Emission Nanoparticles through Molecular Packing Modulation for Multimodal Image-Guided Synergistic Phototherapy.
aggregation-induced emission
cancer phototheranostics
effective π-conjugation
nanoparticles
packing modes
Journal
Advanced healthcare materials
ISSN: 2192-2659
Titre abrégé: Adv Healthc Mater
Pays: Germany
ID NLM: 101581613
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
23
04
2021
received:
25
02
2021
pubmed:
8
5
2021
medline:
11
1
2022
entrez:
7
5
2021
Statut:
ppublish
Résumé
Fluorescent nanoparticles (NPs) with aggregation-induced emission (AIE) characteristics hold remarkable potential for image-guided phototherapy. The molecular packing is the key point for optimizing the performance of AIE luminogens (AIEgens) in the aggregated or solid state. However, so far, the packing mode of AIEgens in NPs is still vague, causing some challenges for understanding the relationship between the photophysical property and packing mode, as well as further optimizing the performance of NPs for biomedical applications. In this contribution, by simply controlling the length of alkoxy chains in the donor-acceptor conjugated OPTPA, a packing balance between the twisted molecular structure and effective π-conjugation is actualized. Subsequently, the possibility of amorphous-crystalline transition of AIEgens in the polymer-encapsulated NPs is presented for the first time, and the comprehensive performance of NPs is further optimized. Both in vitro and in vivo experiments indicate that crystalline AIEgen-based NPs are remarkably effective in trimodal imaging-guided synergistic phototherapy.
Identifiants
pubmed: 33960129
doi: 10.1002/adhm.202100360
doi:
Substances chimiques
Fluorescent Dyes
0
Polymers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100360Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
a) Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16;
b) C. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, J. Am. Chem. Soc. 2020, 142, 14789.
a) S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, Biomaterials 2011, 32, 7127;
b) M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey, Chem. Soc. Rev. 2011, 40, 340.
a) J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London 1970, p. 528;
b) C. W. Tang, S. A. V. anslyke, Appl. Phys. Lett. 1987, 51, 913.
a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 18, 1740;
b) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718;
c) F. Hu, S. Xu, B. Liu, Adv. Mater. 2018, 30, 1801350;
d) G. Feng, B. Liu, Acc. Chem. Res. 2018, 51, 1404;
e) X. Cai, B. Liu, Angew. Chem., Int. Ed. 2020, 59, 9868;
f) D. Wang, M. M. S. Lee, W. Xu, G. Shan, X. Zheng, R. T. K. Kwok, J. W. Y. Lam, X. Hu, B. Z. Tang, Angew. Chem., Int. Ed. 2019, 58, 5628;
g) H. Cao, Y. Yang, J. Li, Aggregate 2020, 1, 69.
a) A. Ajayaghosh, Chem. Soc. Rev. 2003, 32, 181;
b) S. Xu, Y. Duan, B. Liu, Adv. Mater. 2020, 32, 1903530;
c) W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494.
a) M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 2000, 122, 5147;
b) B.-K. An, S.-K. Kwon, S.-D. Jung, S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410;
c) J. Dong, K. M. Solntsev, L. M. Tolbert, J. Am. Chem. Soc. 2009, 131, 662;
d) X. Gu, J. Yao, G. Zhang, Y. Yan, C. Zhang, Q. Peng, Q. Liao, Y. Wu, Z. Xu, Y. Zhao, H. Fu, D. Zhang, Adv. Funct. Mater. 2012, 22, 4862;
e) N. Li, Y. Y. Liu, Y. Li, J. B. Zhuang, R. R. Cui, Q. Gong, N. Zhao, B. Z. Tang, ACS Appl. Mater. Interfaces 2018, 10, 24249;
f) Q. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962.
a) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653;
b) K. Li, B. Liu, Chem. Soc. Rev. 2014, 43, 6570;
c) S. Chen, H. Wang, Y. Hong, B. Z. Tang, Mater. Horiz. 2016, 3, 283.
a) W. Wu, D. Mao, S. Xu, Kenry, F. H.u, X. Li, D. Kong, B. Liu, Chem 2018, 4, 1937;
b) S. Liu, H. Zhang, Y. Li, J. Liu, L. Du, M. Chen, R. T. K. Kwok, J. W. Y. Lam, D. L. Phillips, B. Z. Tang, Angew. Chem., Int. Ed. 2018, 57, 15189;
c) J. Qi, C. Chen, D. Ding, B. Z. Tang, Adv. Healthcare Mater. 2018, 7, 1800477;
d) M. Kang, Z. Zhang, N. Song, M. Li, P. Sun, X. Chen, D. Wang, B. Z. Tang, Aggregate 2020, 1, 80.
J. Qi, C. Sun, D. Li, H. Zhang, W. Yu, A. Zebibula, J. W. Y. Lam, W. Xi, L. Zhu, F. Cai, P. Wei, C. Zhu, R. T. K. Kwok, L. L. Streich, R. Prevedel, J. Qian, B. Z. Tang, ACS Nano 2018, 12, 7936.
S. M. A. Fateminia, Z. Wang, C. C. Goh, P. N. Manghnani, W. Wu, D. Mao, L. G. Ng, Z. Zhao, B. Z. Tang, B. Liu, Adv. Mater. 2017, 29, 1604100.
a) Y. Wang, N. Gong, Y. Li, Q. Lu, X. Wang, J. Li, J. Am. Chem. Soc. 2020, 142, 1735;
b) X. Zhao, S. Long, M. Li, J. Cao, Y. Li, L. Guo, W. Sun, J. Du, J. Fan, X. Peng, J. Am. Chem. Soc. 2020, 142, 1510;
c) X. Mu, Y. Lu, F. Wu, Y. Wei, H. Ma, Y. Zhao, J. Sun, S. Liu, X. Zhou, Z. Li, Adv. Mater. 2020, 32, 1906711.
a) D. Wang, M. M. S. Lee, G. Shan, R. T. K. Kwok, J. W. Y. Lam, H. Su, Y. Cai, B. Z. Tang, Adv. Mater. 2018, 30, 1802105;
b) D. Chen, Z. Wang, H. Dai, X. Lv, Q. Ma, D.-P. Yang, J. Shao, Z. Xu, X. Dong, Small Methods 2020, 4, 2000013.
H. Lu, Y. Zheng, X. Zhao, L. Wang, S. Ma, X. Han, B. Xu, W. Tian, H. Gao, Angew. Chem., Int. Ed. 2016, 55, 155.
a) J. Qi, C. Sun, A. Zebibula, H. Zhang, R. T. K. Kwok, X. Zhao, W. Xi, J. W. Y. Lam, J. Qian, B. Z. Tang, Adv. Mater. 2018, 30, 1706856;
b) W. Wu, D. Mao, S. Xu, M. Panahandeh-Fard, Y. Duan, F. Hu, D. Kong, B. Liu, Adv. Funct. Mater. 2019, 29, 1901791;
c) Y. Li, X. Wang, L. Zhang, L. Liu, Q. Wang, H. Lu, X. Zhao, Mater. Chem. Front. 2020, 4, 3378.
a) Z. Zhao, C. Chen, W. Wu, F. Wang, F. L. Du, X. Zhang, Y. Xiong, X. He, Y. Cai, R. T. K. Kwok, J. W. Y. Lam, X. Gao, P. Sun, D. L. Phillips, D. Ding, B. Z. Tang, Nat. Commun. 2019, 10, 768;
b) S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 5359.
S. l. M. Shishido, A. B. Seabra, W. Loh, M. Ganzarolli de Oliveira, Biomaterials 2003, 24, 3543.
a) D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380;
b) Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev. 2016, 45, 6597;
c) Y. Guan, H. Lu, W. Li, Y. Zheng, Z. Jiang, J. Zou, H. Gao, ACS Appl. Mater. Interfaces 2017, 9, 26731.
B. Nikoobakht, J. Wang, M. A. El-Sayed, Chem. Phys. Lett. 2002, 366, 17.
Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, ACS Nano 2011, 5, 9761.
a) Z. Zhang, W. Xu, M. Kang, H. Wen, H. Guo, P. Zhang, L. Xi, K. Li, L. Wang, D. Wang, B. Z. Tang, Adv. Mater. 2020, 32, 2003210;
b) W. Xu, Z. Zhang, M. Kang, H. Guo, Y. Li, H. Wen, M. M. S. Lee, Z. Wang, R. T. K. Kwok, J. W. Y. Lam, K. Li, L. Xi, S. Chen, D. Wang, B. Z. Tang, ACS Mater. Lett. 2020, 2, 1033.
N. T. Huynh, E. Roger, N. Lautram, J.-P. Benoît, C. Passirani, Nanomedicine 2010, 5, 1415.
L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chem. Rev. 2014, 114, 10869.
J. Weber, P. C. Beard, S. E. Bohndiek, Nat. Methods 2016, 13, 639.