Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment.


Journal

Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445

Informations de publication

Date de publication:
09 2021
Historique:
received: 18 01 2021
accepted: 12 04 2021
revised: 05 04 2021
pubmed: 9 5 2021
medline: 22 3 2022
entrez: 8 5 2021
Statut: ppublish

Résumé

The prognosis of early breast cancer (BC) relies on cell autonomous and immune parameters. The impact of the intestinal microbiome on clinical outcome has not yet been evaluated. Shotgun metagenomics was used to determine the composition of the fecal microbiota in 121 specimens from 76 early BC patients, 45 of whom were paired before and after chemotherapy. These patients were enrolled in the CANTO prospective study designed to record the side effects associated with the clinical management of BC. We analyzed associations between baseline or post-chemotherapy fecal microbiota and plasma metabolomics with BC prognosis, as well as with therapy-induced side effects. We examined the clinical relevance of these findings in immunocompetent mice colonized with BC patient microbiota that were subsequently challenged with histo-compatible mouse BC and chemotherapy. We conclude that specific gut commensals that are overabundant in BC patients compared with healthy individuals negatively impact BC prognosis, are modulated by chemotherapy, and may influence weight gain and neurological side effects of BC therapies. These findings obtained in adjuvant and neoadjuvant settings warrant prospective validation.

Identifiants

pubmed: 33963313
doi: 10.1038/s41418-021-00784-1
pii: 10.1038/s41418-021-00784-1
pmc: PMC8408230
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2778-2796

Informations de copyright

© 2021. The Author(s).

Références

Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19:40–50.
pubmed: 29233559 doi: 10.1016/S1470-2045(17)30904-X
Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: Part 1: assessing the host immune response, tils in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 2017;24:235–251.
pubmed: 28777142 pmcid: 5564448 doi: 10.1097/PAP.0000000000000162
Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24:311–335.
pubmed: 28777143 pmcid: 5638696 doi: 10.1097/PAP.0000000000000161
Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:44–59.
pubmed: 31786121 doi: 10.1016/S1470-2045(19)30689-8
Perales-Puchalt A, Perez-Sanz J, Payne KK, Svoronos N, Allegrezza MJ, Chaurio RA, et al. Frontline science: microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol. 2018;103:799–805.
pubmed: 29537705 doi: 10.1002/JLB.5HI1117-446RR
Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27:27–40.
pubmed: 25533336 doi: 10.1016/j.ccell.2014.11.009
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–970.
pubmed: 24264989 pmcid: 6709532 doi: 10.1126/science.1240527
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–976.
pubmed: 24264990 pmcid: 4048947 doi: 10.1126/science.1240537
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–1089.
pubmed: 26541606 pmcid: 4873287 doi: 10.1126/science.aac4255
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084.
pubmed: 26541610 pmcid: 4721659 doi: 10.1126/science.aad1329
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97.
pubmed: 29097494 doi: 10.1126/science.aan3706
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108.
pubmed: 29302014 pmcid: 6707353 doi: 10.1126/science.aao3290
Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359:1366–1370.
pubmed: 29567708 doi: 10.1126/science.aar6918
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.
pubmed: 29097493 doi: 10.1126/science.aan4236
Mohiuddin JJ, Chu B, Facciabene A, Poirier K, Wang X, Doucette A, et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J Natl Cancer Inst. 2020. https://doi.org/10.1093/jnci/djaa057 .
Huang X-Z, Gao P, Song Y-X, Xu Y, Sun J-X, Chen X-W, et al. Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: a pooled analysis of 2740 cancer patients. Oncoimmunology. 2019;8:e1665973.
pubmed: 31741763 pmcid: 6844307 doi: 10.1080/2162402X.2019.1665973
Lurienne L, Cervesi J, Duhalde L, de Gunzburg J, Andremont A, Zalcman G, et al. NSCLC immunotherapy efficacy and antibiotic use: a systematic review and meta-analysis. J Thorac Oncol. 2020;15:1147–1159.
pubmed: 32173463 doi: 10.1016/j.jtho.2020.03.002
Elkrief A, Derosa L, Kroemer G, Zitvogel L, Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol. 2019;30:1572–1579.
pubmed: 31268133 doi: 10.1093/annonc/mdz206
Derosa L, Routy B, Fidelle M, Iebba V, Alla L, Pasolli E et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol. 2020. https://doi.org/10.1016/j.eururo.2020.04.044 .
Chen KLA, Liu X, Zhao YC, Hieronymi K, Rossi G, Auvil LS, et al. Long-term administration of conjugated estrogen and bazedoxifene decreased murine fecal β-glucuronidase activity without impacting overall microbiome community. Sci Rep. 2018;8:8166.
pubmed: 29802368 pmcid: 5970144 doi: 10.1038/s41598-018-26506-1
Goedert JJ, Hua X, Bielecka A, Okayasu I, Milne GL, Jones GS, et al. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer. 2018;118:471–479.
pubmed: 29360814 pmcid: 5830593 doi: 10.1038/bjc.2017.435
Parida S, Sharma D. Microbial alterations and risk factors of breast cancer: connections and mechanistic insights. Cells. 2020;9. https://doi.org/10.3390/cells9051091 .
Buqué A, Bloy N, Perez-Lanzón M, Iribarren K, Humeau J, Pol JG. et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun 11:3819:2020. https://doi.org/10.1038/s41467-020-17644-0 .
Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature. 2020;583:620–624.
pubmed: 32669709 pmcid: 7881940 doi: 10.1038/s41586-020-2502-7
Paul B, Royston KJ, Li Y, Stoll ML, Skibola CF, Wilson LS, et al. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PLoS ONE. 2017;12:e0189756.
pubmed: 29267377 pmcid: 5739415 doi: 10.1371/journal.pone.0189756
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15:962–968.
pubmed: 30377376 pmcid: 6235447 doi: 10.1038/s41592-018-0176-y
Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15:382–396.
pubmed: 29636538 doi: 10.1038/s41571-018-0006-2
Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 2020;26:919–931.
pubmed: 32451498 doi: 10.1038/s41591-020-0882-8
Hakozaki T, Richard C, Okuma Y, Derosa L, Elkrief A, Zitvogel L, et al. Gut microbiome to predict efficacy and immune-related toxicities in patients with advanced non-small cell lung cancer treated with anti-PD-1/PD-L1 antibody-based immunotherapy. JCO. 2020;38:3095–3095.
doi: 10.1200/JCO.2020.38.15_suppl.3095
Zhu J, Liao M, Yao Z, Liang W, Li Q, Liu J, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome. 2018;6:136.
pubmed: 30081953 pmcid: 6080540 doi: 10.1186/s40168-018-0515-3
Desmedt C, Fornili M, Clatot F, Demicheli R, De Bortoli D, Di Leo A, et al. Differential benefit of adjuvant docetaxel-based chemotherapy in patients with early breast cancer according to baseline body mass index. JCO. 2020, JCO.19.01771.
Guan X, Ma F, Sun X, Li C, Li L, Liang F, et al. Gut microbiota profiling in patients with HER2-negative metastatic breast cancer receiving metronomic chemotherapy of capecitabine compared to those under conventional dosage. Front Oncol. 2020;10:902.
pubmed: 32733788 pmcid: 7358584 doi: 10.3389/fonc.2020.00902
Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health. 2018; 15. https://doi.org/10.3390/ijerph15081747 .
Luu TH, Michel C, Bard J-M, Dravet F, Nazih H, Bobin-Dubigeon C. Intestinal proportion of blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer. 2017;69:267–275.
pubmed: 28094541 doi: 10.1080/01635581.2017.1263750
Buchta Rosean C, Bostic RR, Ferey JCM, Feng T-Y, Azar FN, Tung KS, et al. Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res. 2019;79:3662–3675.
pubmed: 31064848 doi: 10.1158/0008-5472.CAN-18-3464
Dias RB, Rombo DM, Ribeiro JA, Henley JM, Sebastião AM. Adenosine: setting the stage for plasticity. Trends Neurosci. 2013;36:248–257.
pubmed: 23332692 doi: 10.1016/j.tins.2012.12.003
Antonioli L, Csóka B, Fornai M, Colucci R, Kókai E, Blandizzi C, et al. Adenosine and inflammation: what’s new on the horizon? Drug Discov Today. 2014;19:1051–1068.
pubmed: 24607729 doi: 10.1016/j.drudis.2014.02.010
Carman AJ, Mills JH, Krenz A, Kim D-G, Bynoe MS. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci. 2011;31:13272–13280.
pubmed: 21917810 pmcid: 3328085 doi: 10.1523/JNEUROSCI.3337-11.2011
Lee C-C, Chang C-P, Lin C-J, Lai H-L, Kao Y-H, Cheng S-J, et al. Adenosine augmentation evoked by an ENT1 inhibitor improves memory impairment and neuronal plasticity in the APP/PS1 mouse model of Alzheimer’s disease. Mol Neurobiol. 2018;55:8936–8952.
pubmed: 29616397 doi: 10.1007/s12035-018-1030-z
Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest. 2013;123:3552–3563.
pubmed: 23863710 pmcid: 3726154 doi: 10.1172/JCI65636
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139:1019–1055.
pubmed: 27365148 doi: 10.1111/jnc.13724
Chen J-F, Lee C, Chern Y. Adenosine receptor neurobiology: overview. Int Rev Neurobiol. 2014;119:1–49.
pubmed: 25175959 doi: 10.1016/B978-0-12-801022-8.00001-5
Grajeda-Iglesias C, Durand S, Daillère R, Iribarren K, Lemaitre F, Derosa L et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging. 2021; 13. https://doi.org/10.18632/aging.202739 .
Ma L, Ni Y, Wang Z, Tu W, Ni L, Zhuge F, et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes. 2020;12:1–19.
pubmed: 33151120 doi: 10.1080/19490976.2020.1832857
Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, et al. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology. 2019;8:e1657375.
pubmed: 31646107 pmcid: 6791453 doi: 10.1080/2162402X.2019.1657375
Ferrere G, Tidjani Alou M, Liu P, Goubet A-G, Fidelle M, Kepp O, et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD1 blockade. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.145207 .
Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565:600–605.
pubmed: 30675064 doi: 10.1038/s41586-019-0878-z
Perraudeau F, McMurdie P, Bullard J, Cheng A, Cutcliffe C, Deo A, et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res Care. 2020;8. https://doi.org/10.1136/bmjdrc-2020-001319 .
Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–1103.
pubmed: 31263284 pmcid: 6699990 doi: 10.1038/s41591-019-0495-2
Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol. 1997;63:2802–2813.
pubmed: 9212428 pmcid: 168577 doi: 10.1128/aem.63.7.2802-2813.1997
Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65:4799–4807.
pubmed: 10543789 pmcid: 91647 doi: 10.1128/AEM.65.11.4799-4807.1999
Criscuolo A, Brisse S. AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics. 2013;102:500–506.
pubmed: 23912058 doi: 10.1016/j.ygeno.2013.07.011
Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Microbiology. 2020. https://doi.org/10.1101/2020.11.19.388223 .
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–841.
pubmed: 24997786 doi: 10.1038/nbt.2942
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359.
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588.
pubmed: 23985875 doi: 10.1038/nature12480
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546.
pubmed: 23985870 doi: 10.1038/nature12506
Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32:822–828.
pubmed: 24997787 doi: 10.1038/nbt.2939
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Viltard M, Durand S, Pérez-Lanzón M, Aprahamian F, Lefevre D, Leroy C, et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging. 2019;11:4783–4800.
pubmed: 31346149 pmcid: 6682510 doi: 10.18632/aging.102116
Mattarollo SR, Loi S, Duret H, Ma Y, Zitvogel L, Smyth MJ. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 2011;71:4809–4820.
pubmed: 21646474 doi: 10.1158/0008-5472.CAN-11-0753

Auteurs

Safae Terrisse (S)

Gustave Roussy Cancer Center, Villejuif, France.
INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France.
University Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France.
Department of Medical Oncology, Saint Louis Hospital, Paris, France.

Lisa Derosa (L)

Gustave Roussy Cancer Center, Villejuif, France.
INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.

Valerio Iebba (V)

Gustave Roussy Cancer Center, Villejuif, France.
INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France.

François Ghiringhelli (F)

Research Platform in Biological Oncology, Dijon, France.
GIMI Genetic and Immunology Medical Institute, Dijon, France.
University of Burgundy-Franche Comté, Dijon, France.
Department of Medical Oncology, Center GF Leclerc, Dijon, France.

Ines Vaz-Luis (I)

INSERM U 981, Gustave Roussy, Villejuif, Île-de-France, France.
Department of Medicine, Breast Cancer committee, Gustave Roussy, Villejuif, France.

Guido Kroemer (G)

INSERM U1138, Equipe Labelisée par la ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
Université de Paris, Paris, France.
Sorbonne Université, Paris, France.

Marine Fidelle (M)

Gustave Roussy Cancer Center, Villejuif, France.
INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France.
University Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France.
Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.

Stergios Christodoulidis (S)

University Paris Saclay, Saint-Aubain, France.
Prism Precision Medicine Center, Gustave Roussy, Villejuif, France.

Nicola Segata (N)

Department of Medical Sciences, University of Trieste, Trieste, Italy.
Department CIBIO, University of Trento, Trento, Italy.

Andrew Maltez Thomas (AM)

Department CIBIO, University of Trento, Trento, Italy.

Anne-Laure Martin (AL)

UNICANCER, Paris, France.

Aude Sirven (A)

UNICANCER, Paris, France.

Sibille Everhard (S)

UNICANCER, Paris, France.

Fanny Aprahamian (F)

Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.

Nitharsshini Nirmalathasan (N)

Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.

Romy Aarnoutse (R)

Faculty of Health, Medicine & Life Sciences, Department of Surgery, Maastricht, The Netherlands.
GROW School for Oncology & Developmental Biology, Maastricht, The Netherlands.
Maastricht University, Maastricht, The Netherlands.

Marjolein Smidt (M)

Faculty of Health, Medicine & Life Sciences, Department of Surgery, Maastricht, The Netherlands.
GROW School for Oncology & Developmental Biology, Maastricht, The Netherlands.
Maastricht University, Maastricht, The Netherlands.

Janine Ziemons (J)

Faculty of Health, Medicine & Life Sciences, Department of Surgery, Maastricht, The Netherlands.
GROW School for Oncology & Developmental Biology, Maastricht, The Netherlands.
Maastricht University, Maastricht, The Netherlands.

Carlos Caldas (C)

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK.

Sibylle Loibl (S)

Goethe University Frankfurt, Frankfurt, Germany.
Clinical Consultant Centre for Haematology and Oncology, Frankfurt, Germany.

Carsten Denkert (C)

Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany.

Sylvere Durand (S)

Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.

Claudia Iglesias (C)

Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.

Filippo Pietrantonio (F)

Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.

Bertrand Routy (B)

Division d'hémato-oncologie, Département de Médicine, Centre Hospitalier de l'université de Montréal (CHUM), Montréal, Québec, Canada.

Fabrice André (F)

Gustave Roussy Cancer Center, Villejuif, France.
INSERM U 981, Gustave Roussy, Villejuif, Île-de-France, France.
Department of Medicine, Breast Cancer committee, Gustave Roussy, Villejuif, France.
University Paris Saclay, Saint-Aubain, France.

Edoardo Pasolli (E)

Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.

Suzette Delaloge (S)

Gustave Roussy Cancer Center, Villejuif, France.
Department of Medicine, Breast Cancer committee, Gustave Roussy, Villejuif, France.

Laurence Zitvogel (L)

Gustave Roussy Cancer Center, Villejuif, France. laurence.zitvogel@gustaveroussy.fr.
INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France. laurence.zitvogel@gustaveroussy.fr.
University Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France. laurence.zitvogel@gustaveroussy.fr.
Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France. laurence.zitvogel@gustaveroussy.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH