Locally Adaptive Inversions Modulate Genetic Variation at Different Geographic Scales in a Seaweed Fly.
diptera
environmental associations
local adaptation
population genomics
structural variants
Journal
Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455
Informations de publication
Date de publication:
23 08 2021
23 08 2021
Historique:
pubmed:
9
5
2021
medline:
26
3
2022
entrez:
8
5
2021
Statut:
ppublish
Résumé
Across a species range, multiple sources of environmental heterogeneity, at both small and large scales, create complex landscapes of selection, which may challenge adaptation, particularly when gene flow is high. One key to multidimensional adaptation may reside in the heterogeneity of recombination along the genome. Structural variants, like chromosomal inversions, reduce recombination, increasing linkage disequilibrium among loci at a potentially massive scale. In this study, we examined how chromosomal inversions shape genetic variation across a species range and ask how their contribution to adaptation in the face of gene flow varies across geographic scales. We sampled the seaweed fly Coelopa frigida along a bioclimatic gradient stretching across 10° of latitude, a salinity gradient, and a range of heterogeneous, patchy habitats. We generated a chromosome-level genome assembly to analyze 1,446 low-coverage whole genomes collected along those gradients. We found several large nonrecombining genomic regions, including putative inversions. In contrast to the collinear regions, inversions and low-recombining regions differentiated populations more strongly, either along an ecogeographic cline or at a fine-grained scale. These genomic regions were associated with environmental factors and adaptive phenotypes, albeit with contrasting patterns. Altogether, our results highlight the importance of recombination in shaping adaptation to environmental heterogeneity at local and large scales.
Identifiants
pubmed: 33963409
pii: 6272233
doi: 10.1093/molbev/msab143
pmc: PMC8382925
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3953-3971Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.