Neural Systems Under Change of Scale.
computational neuroscience
dynamic causal modeling (DCM)
mechanical similarity
renormalisation group theory
scalable neural systems
scale free neural systems
theoretical neuroscience
Journal
Frontiers in computational neuroscience
ISSN: 1662-5188
Titre abrégé: Front Comput Neurosci
Pays: Switzerland
ID NLM: 101477956
Informations de publication
Date de publication:
2021
2021
Historique:
received:
17
12
2020
accepted:
26
03
2021
entrez:
10
5
2021
pubmed:
11
5
2021
medline:
11
5
2021
Statut:
epublish
Résumé
We derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be "scalable" if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler's third law from the timeseries. In contrast, a "scale free" system is one in which there is no characteristic length scale, meaning that images of such a system are statistically unchanged at different levels of magnification. As an example of such a system, we use calcium imaging collected in murine cortex and show that the dynamical critical exponent, as defined in renormalization group theory, can be estimated in an empirical biological setting. We find that a task-relevant region of the cortex is associated with higher dynamical critical exponents in task vs. spontaneous states and vice versa for a task-irrelevant region.
Identifiants
pubmed: 33967728
doi: 10.3389/fncom.2021.643148
pmc: PMC8099030
doi:
Banques de données
figshare
['10.6084/m9.figshare.12012852.v1']
Types de publication
Journal Article
Langues
eng
Pagination
643148Informations de copyright
Copyright © 2021 Fagerholm, Foulkes, Gallero-Salas, Helmchen, Friston, Leech and Moran.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Trends Neurosci. 2018 Oct;41(10):729-743
pubmed: 30274607
Neuron. 2013 Oct 30;80(3):751-64
pubmed: 24183025
iScience. 2019 Feb 22;12:121-131
pubmed: 30682624
J Neurosci. 2011 Nov 30;31(48):17514-26
pubmed: 22131413
Front Physiol. 2012 Jun 07;3:163
pubmed: 22701101
Front Physiol. 2012 Feb 08;3:15
pubmed: 22347863
Neuroscientist. 2013 Feb;19(1):88-100
pubmed: 22627091
Neuroimage. 2017 Feb 1;146:609-625
pubmed: 27751941
PLoS Comput Biol. 2010 Dec 02;6(12):e1001013
pubmed: 21152008
J Neurosci. 2009 Dec 9;29(49):15595-600
pubmed: 20007483
Neuroimage. 2008 Aug 15;42(2):649-62
pubmed: 18565765
Neurosci Biobehav Rev. 2018 Jan;84:151-161
pubmed: 29180258
J Math Neurosci. 2019 May 9;9(1):2
pubmed: 31073652
Neural Netw. 2019 Feb;110:91-103
pubmed: 30508808
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1356-E1365
pubmed: 29378970
Front Neurosci. 2018 Feb 02;12:34
pubmed: 29456489
Nat Methods. 2017 Apr;14(4):388-390
pubmed: 28218900
Netw Neurosci. 2017 Jun 01;1(2):143-165
pubmed: 29911674
Neuroimage. 2003 Aug;19(4):1273-302
pubmed: 12948688
J Neurosci. 2011 Sep 28;31(39):13786-95
pubmed: 21957241
Phys Rev Lett. 2005 Jan 14;94(1):018102
pubmed: 15698136
Neuroimage. 2008 Jul 1;41(3):849-85
pubmed: 18434205
Front Neuroanat. 2018 Oct 23;12:83
pubmed: 30405363
Neuron. 2018 Aug 22;99(4):814-828.e7
pubmed: 30100254
Nat Neurosci. 2017 Feb 23;20(3):340-352
pubmed: 28230845
Phys Rev Lett. 2013 Apr 26;110(17):178101
pubmed: 23679783
Neuroimage. 2016 Mar;128:413-431
pubmed: 26569570
Neuron. 2015 Mar 4;85(5):942-58
pubmed: 25741722
J Neurosci. 2014 Dec 10;34(50):16611-20
pubmed: 25505314
Prog Neurobiol. 2017 Nov;158:132-152
pubmed: 28734836
Trends Neurosci. 2007 Mar;30(3):101-10
pubmed: 17275102
J Neurosci. 2003 Dec 3;23(35):11167-77
pubmed: 14657176
Phys Rev Lett. 2019 Oct 25;123(17):178103
pubmed: 31702278
Neuroimage. 2011 Sep 15;58(2):442-57
pubmed: 21310247
Nature. 2013 Jul 18;499(7458):336-40
pubmed: 23792559
Cereb Cortex. 2017 Oct 1;27(10):4911-4922
pubmed: 27620975