High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics.

CAZyme bioprospecting biotechnology cellulases thermophilic enzymes

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2021
Historique:
received: 15 02 2021
accepted: 29 03 2021
entrez: 10 5 2021
pubmed: 11 5 2021
medline: 11 5 2021
Statut: epublish

Résumé

Enzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermo-stable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.

Identifiants

pubmed: 33968004
doi: 10.3389/fmicb.2021.668238
pmc: PMC8098120
doi:

Types de publication

Journal Article

Langues

eng

Pagination

668238

Informations de copyright

Copyright © 2021 Reichart, Bowers, Woyke and Hatzenpichler.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

FEMS Microbiol Lett. 2016 Nov 1;363(21):
pubmed: 27810887
Front Microbiol. 2020 Jan 10;10:2972
pubmed: 31998263
PLoS One. 2013;8(1):e53350
pubmed: 23326417
Environ Microbiol. 2013 Sep;15(9):2573-87
pubmed: 23763762
Front Microbiol. 2020 Jul 14;11:1625
pubmed: 32760379
Biotechnol Biofuels. 2016 Jan 29;9:22
pubmed: 26834834
Structure. 1995 Sep 15;3(9):853-9
pubmed: 8535779
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9551-9556
pubmed: 30181282
Biotechnol Biofuels. 2011 May 13;4:11
pubmed: 21569460
Microbiome. 2020 Jun 23;8(1):96
pubmed: 32576253
Nucleic Acids Res. 2021 Jan 8;49(D1):D751-D763
pubmed: 33119741
PLoS One. 2012;7(6):e39331
pubmed: 22723998
Int J Syst Evol Microbiol. 2020 Nov;70(11):5717-5724
pubmed: 32956031
mSystems. 2020 Mar 10;5(2):
pubmed: 32156798
Int J Syst Evol Microbiol. 2006 May;56(Pt 5):965-971
pubmed: 16627639
Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2082-2088
pubmed: 19837732
Nat Prod Rep. 2011 Nov;28(12):1883-96
pubmed: 21918777
Appl Environ Microbiol. 2009 Jul;75(14):4762-9
pubmed: 19465524
Front Microbiol. 2016 Sep 27;7:1521
pubmed: 27729905
Sci Rep. 2015 Oct 09;5:14567
pubmed: 26449758
Biotechnol Biofuels. 2020 Sep 2;13:153
pubmed: 32905355
Environ Microbiol. 2013 Apr;15(4):1160-75
pubmed: 23126508
Front Microbiol. 2017 Dec 20;8:2504
pubmed: 29326667
Nat Commun. 2019 Feb 8;10(1):681
pubmed: 30737379
Science. 2011 Jan 28;331(6016):463-7
pubmed: 21273488
Front Microbiol. 2016 May 31;7:744
pubmed: 27303369
Arch Microbiol. 2019 Dec;201(10):1385-1397
pubmed: 31338542
Environ Microbiol. 2018 Mar;20(3):1041-1063
pubmed: 29327410
Biol Res. 2018 Oct 5;51(1):37
pubmed: 30290805
ACS Chem Biol. 2014 Sep 19;9(9):2082-91
pubmed: 24984213
Chem Biol. 2014 Sep 18;21(9):1211-23
pubmed: 25237864
Nucleic Acids Res. 2021 Jan 8;49(D1):D523-D528
pubmed: 32941621
Front Microbiol. 2013 Nov 12;4:330
pubmed: 24282404
Int J Syst Bacteriol. 1998 Jan;48 Pt 1:31-8
pubmed: 9542073
Microorganisms. 2020 Aug 27;8(9):
pubmed: 32867302
Stand Genomic Sci. 2015 Dec 09;10:122
pubmed: 26664700
ISME J. 2014 Jun;8(6):1166-74
pubmed: 24430481
Front Microbiol. 2013 May 29;4:84
pubmed: 23755042
Front Microbiol. 2013 May 06;4:67
pubmed: 23653623
PLoS One. 2010 Mar 19;5(3):e9773
pubmed: 20333304
ISME J. 2011 Aug;5(8):1262-78
pubmed: 21697961
J Microbiol Biotechnol. 2014 Sep;24(9):1280-90
pubmed: 24809291
J Bacteriol. 2012 Sep;194(18):5091-100
pubmed: 22821975
Nat Microbiol. 2020 Jul;5(7):887-900
pubmed: 32367054
Nat Chem Biol. 2018 Aug;14(8):752-759
pubmed: 30013060
Front Microbiol. 2020 Feb 26;11:281
pubmed: 32174898
ISME J. 2020 Nov;14(11):2851-2861
pubmed: 32887944
Nucleic Acids Res. 2021 Jan 8;49(D1):D723-D733
pubmed: 33152092
BMC Microbiol. 2008 Jan 10;8:6
pubmed: 18186940
PLoS One. 2013 Apr 12;8(4):e61126
pubmed: 23593407
ISME J. 2009 Apr;3(4):442-53
pubmed: 19129864
mSystems. 2018 Nov 20;3(6):
pubmed: 30505945
ISME J. 2020 Mar;14(3):659-675
pubmed: 31754206
Microb Ecol. 2015 Aug;70(2):411-24
pubmed: 25712554
Extremophiles. 2018 Jan;22(1):131-140
pubmed: 29177717
Front Microbiol. 2016 Dec 20;7:1979
pubmed: 28066333
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14195-200
pubmed: 19617544
Appl Environ Microbiol. 2009 Aug;75(15):5111-20
pubmed: 19502440
PLoS One. 2016 Jan 07;11(1):e0146454
pubmed: 26741138
FEBS J. 2020 Mar;287(6):1116-1137
pubmed: 31595646
Environ Microbiol. 2017 Jun;19(6):2334-2347
pubmed: 28276174
PLoS One. 2013 Apr 24;8(4):e61928
pubmed: 23637931
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6
pubmed: 24889625
Biotechnol Biofuels. 2014 Oct 09;7(1):142
pubmed: 25317205
Nat Commun. 2018 Jul 23;9(1):2876
pubmed: 30038374
Nat Microbiol. 2019 Dec;4(12):2498-2510
pubmed: 31611640
PLoS One. 2013;8(3):e59927
pubmed: 23555835
Science. 2013 Dec 20;342(6165):1513-6
pubmed: 24357319
Front Microbiol. 2013 Jun 03;4:106
pubmed: 23761787
Biotechnol Adv. 2018 Dec;36(8):2077-2100
pubmed: 30266344
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2550-2555
pubmed: 28202731
Front Microbiol. 2012 Jun 18;3:221
pubmed: 22719737
Appl Environ Microbiol. 2013 Mar;79(5):1545-54
pubmed: 23263967
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7665-70
pubmed: 22547789
Microb Ecol. 2020 Apr;79(3):770-784
pubmed: 31432245
AMB Express. 2017 Sep 29;7(1):183
pubmed: 28963711
Nat Protoc. 2014 May;9(5):1038-48
pubmed: 24722403
Int J Syst Bacteriol. 1999 Jul;49 Pt 3:1157-63
pubmed: 10425774
ISME J. 2019 Feb;13(2):413-429
pubmed: 30258172
Genome Biol. 2019 Nov 28;20(1):257
pubmed: 31779668
Front Microbiol. 2013 May 15;4:95
pubmed: 23720654
Microorganisms. 2018 Feb 24;6(1):
pubmed: 29495256
BMC Genomics. 2014 Jun 18;15:486
pubmed: 24942338
Appl Environ Microbiol. 2018 Jan 17;84(3):
pubmed: 29101202
Nat Commun. 2011 Jul 05;2:375
pubmed: 21730956
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101
pubmed: 29771380
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786

Auteurs

Nicholas J Reichart (NJ)

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
Thermal Biology Institute, Montana State University, Bozeman, MT, United States.
Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States.

Robert M Bowers (RM)

Department of Energy, Joint Genome Institute, Berkeley, CA, United States.

Tanja Woyke (T)

Department of Energy, Joint Genome Institute, Berkeley, CA, United States.

Roland Hatzenpichler (R)

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
Thermal Biology Institute, Montana State University, Bozeman, MT, United States.
Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States.

Classifications MeSH