Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon Hebetor.

Cif genes Cytoplasmic Incompatibility Habrobracon hebetor Male aging Prophage WO Temperature Wolbachia

Journal

Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 15 02 2021
accepted: 27 04 2021
pubmed: 11 5 2021
medline: 5 3 2022
entrez: 10 5 2021
Statut: ppublish

Résumé

Wolbachia is an endosymbiotic bacterium found in many species of arthropods and manipulates its host reproduction. Cytoplasmic incompatibility (CI) is one of the most common manipulations that is induced when an uninfected female mates with a Wolbachia-infected male. The CI factors (cifA and cifB genes) are encoded by phage WO that naturally infects Wolbachia. Here, we questioned whether an environmental factor (temperature) or host factor (male age) affected the strength of the CI phenotype in the ectoparasitoid wasp, Habrobracon hebetor. We found that temperature, but not male age, results in reduced CI penetrance. Consistent with these results, we also found that the expression of the cif CI factors decreased in temperature-exposed males but was consistent across aging male wasps. Similar to studies of other insect systems, cifA showed a higher expression level than cifB, and male hosts showed increased cif expression relative to females. Our results suggest that prophage WO is present in the Wolbachia-infected wasps and expression of cif genes contributes to the induction of CI in this insect. It seems that male aging has no effect on the intensity of CI; however, temperature affects Wolbachia and prophage WO titers as well as expression levels of cif genes, which modulate the CI level.

Identifiants

pubmed: 33969432
doi: 10.1007/s00248-021-01768-x
pii: 10.1007/s00248-021-01768-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

482-491

Subventions

Organisme : Iran National Science Foundation
ID : 98008582

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969
doi: 10.1038/nrmicro1969
Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:1–12. https://doi.org/10.1186/1741-7007-6-27
doi: 10.1186/1741-7007-6-27
Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560. https://doi.org/10.1038/346558a0
doi: 10.1038/346558a0 pubmed: 2377229
O’Neill SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180. https://doi.org/10.1038/348178a0
doi: 10.1038/348178a0 pubmed: 2234083
Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948
doi: 10.1093/genetics/126.4.933
Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513. https://doi.org/10.2307/2410244
doi: 10.2307/2410244 pubmed: 28568404
Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658. https://doi.org/10.1038/232657a0
doi: 10.1038/232657a0 pubmed: 4937405
Holden PR, Jones P, Brookfield JF (1993) Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet Res 62:23–29. https://doi.org/10.1017/s00166723000315229
doi: 10.1017/s00166723000315229 pubmed: 7691685
Werren JH, Loehlin DW (2009) Curing Wolbachia infections in Nasonia (parasitoid wasp), Cold Spring Harb Protoc. Pdb-prot5312. https://doi.org/10.1101/pdb.prot5312
Engelstädter J, Telschow A (2009) Cytoplasmic incompatibility and host population structure. Heredity 103:196–207. https://doi.org/10.1038/hdy.2009.53
doi: 10.1038/hdy.2009.53 pubmed: 19436325
Stouthamer R, Breeuwer JAJ, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68. https://doi.org/10.1038/361066a0
doi: 10.1038/361066a0 pubmed: 7538198
Hurst GDD, von der Schulenburg JG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard, J, ..., Majerus MEN (1999) Invasion of one insect species, Adalia bipunctata, by two different male‐killing bacteria. Insect Mol Biol 8:133-139. https://doi.org/10.1046/j.1365-2583.1999.810133x16
Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond Ser B Biol Sci 250:91–98. https://doi.org/10.1098/rspb.1992.0135
doi: 10.1098/rspb.1992.0135
Dobson SL, Rattanadechakul W, Marsland EJ (2004) Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus. Heredity 93:135–142. https://doi.org/10.1038/sj.hdy.6800458
doi: 10.1038/sj.hdy.6800458 pubmed: 15127087
LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, ..., Bordenstein SR (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543: 243-247. https://doi.org/10.1038/nature21391
Shropshire JD, On J, Layton EM, Zhou H, Bordenstein SR (2018) One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc Natl Acad Sci 115:4987–4991. https://doi.org/10.1073/pnas.1800650115
doi: 10.1073/pnas.1800650115 pubmed: 29686091 pmcid: 5948995
Shropshire JD, Bordenstein SR (2019) Two-by-one model of cytoplasmic incompatibility: synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genet 15:e1008221. https://doi.org/10.1371/journal.pgen.1008221
doi: 10.1371/journal.pgen.1008221 pubmed: 31242186 pmcid: 6594578
Shropshire JD, Rosenberg R, Bordenstein SR (2021) The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes. Genetics 217:iyaa007. https://doi.org/10.1093/genetics/iyaa007
doi: 10.1093/genetics/iyaa007
Endersby-Harshman NM, Axford JK, Hoffmann AA (2019) Environmental concentrations of antibiotics may diminish Wolbachia infections in Aedes aegypti (Diptera: Culicidae). J Med Entomol 56:1078–1086. https://doi.org/10.1093/jme/tjz023
doi: 10.1093/jme/tjz023 pubmed: 30889242
Wu K, Hoy MA (2012) Extended starvation reduced and eliminated Wolbachia, but not Cardinium, from Metaseiulus occidentalis females (Acari: Phytoseiidae): A need to reassess Wolbachia’s status in this predatory mite? J Invertebr Pathol 109:20–26. https://doi.org/10.1016/j.jip.2011.09.005
doi: 10.1016/j.jip.2011.09.005 pubmed: 21946455
Clancy DJ, Hoffmann AA (1998) Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 86:13–24. https://doi.org/10.1023/a:1003043814761
doi: 10.1023/a:1003043814761
Dutton TJ, Sinkins SP (2004) Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol Biol 13:317–322. https://doi.org/10.1111/j.0962-1075.2004.00490.x
doi: 10.1111/j.0962-1075.2004.00490.x pubmed: 15157232
Reynolds KT, Hoffmann AA (2002) Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet Res 80:79–87. https://doi.org/10.1017/S0016672302005827
doi: 10.1017/S0016672302005827 pubmed: 12534211
Bordenstein SR, Bordenstein SR (2011) Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS One 6:e29106. https://doi.org/10.1371/journal.pone.0029106
doi: 10.1371/journal.pone.0029106 pubmed: 22194999 pmcid: 3240643
Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49. https://doi.org/10.1017/S0031182005008723
doi: 10.1017/S0031182005008723 pubmed: 16393353
Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2:e43. https://doi.org/10.1371/journal.ppat.0020043
doi: 10.1371/journal.ppat.0020043 pubmed: 16710453 pmcid: 1463016
Ghimire MN (2008) Reproductive performance of the Parasitoid Bracon hebetor Say (Hymenoptera: Braconidae) on various host species of Lepidoptera(Doctoral dissertation, Oklahoma State University)
Bagheri Z, Talebi AA, Asgari S, Mehrabadi M (2019a) Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation. J Invertebr Pathol 163:1–7. https://doi.org/10.1016/j.jip.2019.02.005
doi: 10.1016/j.jip.2019.02.005 pubmed: 30807733
Kageyama D, Narita S, Imamura T, Miyanoshita A (2010) Detection and identification of Wolbachia endosymbionts from laboratory stocks of stored-product insect pests and their parasitoids. J Stored Prod Res 46:13–19. https://doi.org/10.1016/j.jspr.2009.07.003
doi: 10.1016/j.jspr.2009.07.003
Fleming VM (2006) Population analyses of bacteria/host interactions. Dissertation, University of Bath (United Kingdom)
O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci 89:2699–2702. https://doi.org/10.1073/pnas.89.7.2699
doi: 10.1073/pnas.89.7.2699 pubmed: 1557375 pmcid: 48729
Narita S, Nomura M, Kageyama D (2007) Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiol Ecol 61:235–245. https://doi.org/10.1111/j.1574-6941.2007.0033.x
doi: 10.1111/j.1574-6941.2007.0033.x pubmed: 17506822
Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188. https://doi.org/10.1016/j.bbrc.2004.03.164
doi: 10.1016/j.bbrc.2004.03.164 pubmed: 15094394
Karamipour N, Fathipour MM (2016) Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Sci Rep 6:33168. https://doi.org/10.1038/srep33168
doi: 10.1038/srep33168 pubmed: 27609055 pmcid: 5016839
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408
doi: 10.1006/meth.2001.1262
Lindsey AR, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton IL (2018) Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biol Evol 10:434–451. https://doi.org/10.1093/gbe/evy012
doi: 10.1093/gbe/evy012 pubmed: 29351633 pmcid: 5793819
Correa CC, Ballard JWO (2016) Wolbachia associations with insects: winning or losing against a master manipulator. Fron Ecol Evol 3:153. https://doi.org/10.3389/fevo.2015.00153
doi: 10.3389/fevo.2015.00153
Masui S, Kamoda S, Sasaki T, Ishikawa H (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497. https://doi.org/10.1007/s002390010112
doi: 10.1007/s002390010112 pubmed: 11080372
Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512. https://doi.org/10.1038/nature04756
doi: 10.1038/nature04756 pubmed: 16724067
Wang XX, Qi LD, Jiang R, Du YZ, Li YX (2017) Incomplete removal of Wolbachia with tetracycline has two-edged reproductive effects in the thelytokous wasp Encarsia formosa (Hymenoptera: Aphelinidae). Sci Rep 7:44014. https://doi.org/10.1038/srep44014
doi: 10.1038/srep44014 pubmed: 28266601 pmcid: 5339822
Goodacre SL, Martin OY (2012) Modification of insect and arachnid behaviours by vertically transmitted endosymbionts: infections as drivers of behavioural change and evolutionary novelty. Insects 3:246–261
doi: 10.3390/insects3010246
Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:e1001214. https://doi.org/10.1371/journal.ppat.1001214
doi: 10.1371/journal.ppat.1001214 pubmed: 21151959 pmcid: 2996333
Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F(2009) Wolbachia interferes with ferretin expression and iron metabolism in insects. PLoS Pathogens. https://doi.org/10.1371/journal.ppat.1000630
Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368. https://doi.org/10.1371/journal.ppat.1000368
doi: 10.1371/journal.ppat.1000368 pubmed: 19343208 pmcid: 2657209
Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Makepeace BL (2012) Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477. https://doi.org/10.1101/gr.138420.112
doi: 10.1101/gr.138420.112 pubmed: 22919073 pmcid: 3514676
Hedges LM, Brownlie JC, Johnson O’Neill SL., KN, (2008) Wolbachia and virus protection in insects. Science 322:702–702. https://doi.org/10.1126/science.1162418
doi: 10.1126/science.1162418 pubmed: 18974344
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. https://doi.org/10.1016/j.cell.2009.11.042
doi: 10.1016/j.cell.2009.11.042
Bagheri Z, Talebi AA, Asgari S, Mehrabadi M (2019b) Wolbachia promote successful sex with siblings. bioRxiv 855635. https://doi.org/10.1101/855635
Pietri JE, DeBruh lH, Sullivan W (2016) The rich somatic life of Wolbachia. Microbiologyopen 5:923–936. https://doi.org/10.1002/mbo3.390
doi: 10.1002/mbo3.390 pubmed: 27461737 pmcid: 5221451
Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O’Neill SL, Johnson KN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol 78:6922–6929
doi: 10.1128/AEM.01727-12
Osborne SE, San Leong Y, O’Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 5(11):e1000656. https://doi.org/10.1371/journal.ppat.1000656
doi: 10.1371/journal.ppat.1000656 pubmed: 19911047 pmcid: 2768908
Bonneau M, Landmann F, Labbé P, Justy F, Weill M, Sicard M (2018) The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity. PLoS Pathog 14:e1007364. https://doi.org/10.1371/journal.ppat.1007364
doi: 10.1371/journal.ppat.1007364 pubmed: 30321239 pmcid: 6201942
Tortosa P, Charlat S, Labbe P, Dehecq JS, Barré H, Weill M (2010) Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS One 5:e9700. https://doi.org/10.1371/journal.pone.0009700
doi: 10.1371/journal.pone.0009700 pubmed: 20300514 pmcid: 2838780
Ming QL, Shen JF, Cheng C, Liu CM, Feng ZJ (2015) Wolbachia infection dynamics in Tribolium confusum (Coleoptera: Tenebrionidae) and their effects on host mating behavior and reproduction. J Econ Entomol 108:1408–1415. https://doi.org/10.1093/jee/tov053
doi: 10.1093/jee/tov053 pubmed: 26470269
Perlman SJ, Dowdy NJ, Harris LR, Khalid M, Kelly SE, Hunter MS (2014) Factors affecting the strength of Cardinium-induced cytoplasmic incompatibility in the parasitic wasp Encarsia pergandiella (Hymenoptera: Aphelinidae). Microbl Ecol 67:671–678. https://doi.org/10.1007/s00248-013-0359-0
doi: 10.1007/s00248-013-0359-0
Mouton L, Henri H, Bouletreau M, Vavre F (2003) Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol Ecol 12:3459–3465. https://doi.org/10.1046/j.1365-294X.2003.02015.x
doi: 10.1046/j.1365-294X.2003.02015.x pubmed: 14629360
Sanogo YO, Dobson SL (2006) WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochem Mol Biol 36:80–85. https://doi.org/10.1016/j.ibmb.2005.11.001
doi: 10.1016/j.ibmb.2005.11.001 pubmed: 16360953
Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609
doi: 10.1146/annurev.ento.42.1.587
Clark ME, Bailey-Jourdain C, Ferree PM, England SJ, Sullivan W, Windsor DM, Werren JH (2008) Wolbachia modification of sperm does not always require residence within developing sperm. Heredity 101:420–428. https://doi.org/10.1028/hdy.2008.71
doi: 10.1028/hdy.2008.71 pubmed: 18648384
Clark ME, Veneti Z, Bourtzis K, Karr TL (2003) Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech Dev 120:185–198. https://doi.org/10.1016/S0925-4773(02)00424-0
doi: 10.1016/S0925-4773(02)00424-0 pubmed: 12559491
Boivin G, Jacob S, Damiens D (2005) Spermatogeny as a life-history index in parasitoid wasps. Oecologia 143:198–202. https://doi.org/10.1007/s00442-004-1800-3
doi: 10.1007/s00442-004-1800-3 pubmed: 15657761
Ferree PM, Aldrich JC, Jing XA, Norwood CT, Van Schaick MR, Cheema MS, Gowen BE (2019) Spermatogenesis in haploid males of the jewel wasp Nasonia vitripennis. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-48332-9
doi: 10.1038/s41598-019-48332-9
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS (2020) Cardinium localization during its parasitoid wasp host’s development provides insights into cytoplasmic incompatibility. Front Microbiol 11:3153. https://doi.org/10.3389/fmicb.2020.606399
doi: 10.3389/fmicb.2020.606399
Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18:173–181. https://doi.org/10.1016/j.tim.2009.12.011
doi: 10.1016/j.tim.2009.12.011 pubmed: 20083406 pmcid: 2862486
Jaenike J (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118:353–362. https://doi.org/10.1111/j.1600-0706.2008.17110.x
doi: 10.1111/j.1600-0706.2008.17110.x
Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178
doi: 10.1093/genetics/155.1.167
Wiwatanaratanabutr I, Grandjean F (2016) Impacts of temperature and crowding on sex ratio, fecundity and Wolbachia infection intensity in the copepod, Mesocyclops thermocyclopoides. J Invertebr Pathol 141:18–23. https://doi.org/10.1016/j.jip.2016.10.003
doi: 10.1016/j.jip.2016.10.003 pubmed: 27756651
Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA (2017) Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog 13:e1006006. https://doi.org/10.1371/journal.ppat.1006006
doi: 10.1371/journal.ppat.1006006 pubmed: 28056065 pmcid: 5215852
Zizzari ZV, Ellers J (2011) Effects of exposure to short-term heat stress on male reproductive fitness in a soil arthropod. J Insect Physiol 57:421–426. https://doi.org/10.1016/j.jinsphys.2011.01.002
doi: 10.1016/j.jinsphys.2011.01.002 pubmed: 21215753
Nguyen TM, Bressac C, Chevrier C (2013) Heat stress affects male reproduction in a parasitoid wasp. J Insect Physiol 59:248–254. https://doi.org/10.1016/j.jinsphys.2012.12.001
doi: 10.1016/j.jinsphys.2012.12.001 pubmed: 23262365
Chevrier C, Nguyen TM, Bressac C (2019) Heat shock sensitivity of adult male fertility in the parasitoid wasp Anisopteromalus calandrae (Hymenoptera, Pteromalidae). J Therm Boil 85:102419. https://doi.org/10.1016/j.jtherbio.2019.102419
doi: 10.1016/j.jtherbio.2019.102419
Chirault M, Lucas C, Goubault M, Chevrier C, Bressac C, Lécureuil CA (2015) Combined approach to heat stress effect on male fertility in Nasonia vitripennis: from the physiological consequences on spermatogenesis to the reproductive adjustment of females mated with stressed males. PLoS One 10:e0120656. https://doi.org/10.1371/journal.pone.0120656
doi: 10.1371/journal.pone.0120656 pubmed: 25807005 pmcid: 4373853
Charlesworth J, Weinert LA, Araujo EV Jr, Welch JJ (2019) Wolbachia, Cardinium and climate: an analysis of global data. Biol Lett 15:20190273. https://doi.org/10.1098/rsbl.2019.0273
doi: 10.1098/rsbl.2019.0273 pubmed: 31432763 pmcid: 6731486

Auteurs

Seyede Fatemeh Nasehi (SF)

Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Yaghoub Fathipour (Y)

Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Sassan Asgari (S)

School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.

Mohammad Mehrabadi (M)

Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. m.mehrabadi@modares.ac.ir.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH