β-Glucan phosphorylases in carbohydrate synthesis.
Carbohydrate synthesis
β-Glucan phosphorylases
β-Glucans
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
received:
09
02
2021
accepted:
26
04
2021
revised:
19
04
2021
pubmed:
11
5
2021
medline:
26
5
2021
entrez:
10
5
2021
Statut:
ppublish
Résumé
β-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of β-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of β-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 ( www.cazy.org ). Since the discovery of β-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of β-glucan and associated β-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules. KEY POINTS: • Discovery, characteristics, and applications of β-glucan phosphorylases. • β-Glucan phosphorylases in the production of functional carbohydrates.
Identifiants
pubmed: 33970317
doi: 10.1007/s00253-021-11320-z
pii: 10.1007/s00253-021-11320-z
pmc: PMC8140972
doi:
Substances chimiques
beta-Glucans
0
Phosphorylases
EC 2.4.1.-
Glycoside Hydrolases
EC 3.2.1.-
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4073-4087Subventions
Organisme : Horizon 2020
ID : 761030
Organisme : Agentschap Innoveren en Ondernemen
ID : HBC.2019.2175
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 12ZD821N
Références
Abe K, Nakajima M, Kitaoka M, Toyoizumi H, Takahashi Y, Sugimoto N, Nakai H, Taguchi H (2015) Large-scale preparation of 1,2-β-glucan using 1,2-β-oligoglucan phosphorylase. J Appl Glycosci 62:47–52. https://doi.org/10.5458/jag.jag.jag-2014_011
doi: 10.5458/jag.jag.jag-2014_011
Abi A, Müller C, Jördening HJ (2017) Improved laminaribiose phosphorylase production by Euglena gracilis in a bioreactor: a comparative study of different cultivation methods. Biotechnol Bioprocess Eng 22:272–280. https://doi.org/10.1007/s12257-016-0649-8
doi: 10.1007/s12257-016-0649-8
Abi A, Wang A, Jördening HJ (2018) Continuous laminaribiose production using an immobilized bienzymatic system in a packed bed reactor. Appl Biochem Biotechnol 186:861–876. https://doi.org/10.1007/s12010-018-2779-2
doi: 10.1007/s12010-018-2779-2
pubmed: 29766370
Abi A, Hartig D, Vorländer K, Wang A, Scholl S, Jördening HJ (2019) Continuous enzymatic production and adsorption of laminaribiose in packed bed reactors. Eng Life Sci 19:4–12. https://doi.org/10.1002/elsc.201800110
doi: 10.1002/elsc.201800110
pubmed: 32624950
Albrecht GJ, Kauss H (1971) Purification, crystallization and properties of a β-(1→3)-glucan phosphorylase from Ochromonas malhamensis. Phytochemistry 10:1293–1298. https://doi.org/10.1016/S0031-9422(00)84330-7
doi: 10.1016/S0031-9422(00)84330-7
Alexander JK (1968) Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum. J Biol Chem 243:2899–2904. https://doi.org/10.1016/S0021-9258(18)93356-9
doi: 10.1016/S0021-9258(18)93356-9
pubmed: 5653182
Anderson CG, Haworth WN, Raistrick H, Stacey M (1939) Polysaccharides synthesized by micro-organisms: the molecular constitution of luteose. Biochem J 33:272–279. https://doi.org/10.1042/bj0330272
doi: 10.1042/bj0330272
pubmed: 16746908
pmcid: 1264367
Barreto-Bergter E, Gorin PAJ (1983) Structural chemistry of polysaccharides from fungi and lichens. Adv Carbohydr Chem Biochem 41:67–103. https://doi.org/10.1016/S0065-2318(08)60056-6
doi: 10.1016/S0065-2318(08)60056-6
Bianchetti CM, Elsen NL, Fox BG, Phillips GN Jr (2011) Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate. Acta Crystallogr Sect F 67:1345–1349. https://doi.org/10.1107/S1744309111032660
doi: 10.1107/S1744309111032660
Brucher B, Häßler T (2019) Enzymatic process for the synthesis of cellobiose. In: Vogel A, May O (eds) Industrial enzyme applications. John Wiley & Sons, Inc., pp 167–178
Chomvong K, Lin E, Blaisse M, Gillespie AE, Cate JHD (2017) Relief of xylose binding to cellobiose phosphorylase by a single distal mutation. ACS Synth Biol 6:206–210. https://doi.org/10.1021/acssynbio.6b00211
doi: 10.1021/acssynbio.6b00211
pubmed: 27676450
Claus S, Van Bogaert INA (2017) Sophorolipid production by yeasts: a critical review of the literature and suggestions for future research. Appl Microbiol Biotechnol 101:7811–7821. https://doi.org/10.1007/s00253-017-8519-7
doi: 10.1007/s00253-017-8519-7
pubmed: 28929199
Colla K, Costanzo A, Gamlath S (2018) Fat replacers in baked food products. Foods 7:192. https://doi.org/10.3390/foods7120192
doi: 10.3390/foods7120192
pmcid: 6306729
Da Silva Mde L, Iacomini M, Jablonski E, Gorin PA (1993) Carbohydrate, glycopeptide and protein components of the lichen Sticta sp. and effect of storage. Phytochemistry 33:547–552. https://doi.org/10.1016/0031-9422(93)85446-X
doi: 10.1016/0031-9422(93)85446-X
De Groeve MRM, Desmet T, Soetaert W (2010a) Engineering of cellobiose phosphorylase for glycoside synthesis. J Biotechnol 156:253–260. https://doi.org/10.1016/j.jbiotec.2011.07.006
doi: 10.1016/j.jbiotec.2011.07.006
De Groeve MRM, Remmery L, Van Hoorebeke A, Stout J, Desmet T, Savvides SN, Soetaert W (2010b) Construction of cellobiose phosphorylase variants with broadened acceptor specificity towards anomerically substituted glucosides. Biotechnol Bioeng 107:413–420. https://doi.org/10.1002/bit.22818
doi: 10.1002/bit.22818
pubmed: 20517986
De Winter K, Cerdobbel A, Soetaert W, Desmet T (2011) Operational stability of immobilized sucrose phosphorylase: continuous production of α-glucose-1-phosphate at elevated temperatures. Process Biochem 46:2074–2078. https://doi.org/10.1016/j.procbio.2011.08.002
doi: 10.1016/j.procbio.2011.08.002
De Winter K, Dewitte G, Dirks-Hofmeister ME, De Laet S, Pelantová H, Křen V, Desmet T (2015a) Enzymatic glycosylation of phenolic antioxidants: phosphorylase-mediated synthesis and characterization. J Agric Food Chem 63:10131–10139. https://doi.org/10.1021/acs.jafc.5b04380
doi: 10.1021/acs.jafc.5b04380
pubmed: 26540621
De Winter K, Van Renterghem L, Wuyts K, Pelantová H, Křen V, Soetaert W, Desmet T (2015b) Chemoenzymatic synthesis of β-D-glucosides using cellobiose phosphorylase from Clostridium thermocellum. Adv Synth Catal 357:1961–1969. https://doi.org/10.1002/adsc.201500077
doi: 10.1002/adsc.201500077
Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, Schiller A (2012) Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chem Eur J 18:10786–10801. https://doi.org/10.1002/chem.201103069
doi: 10.1002/chem.201103069
pubmed: 22887462
Douglas CM (2001) Fungal β(1,3)-D-glucan synthesis. Med Mycol 39:55–66. https://doi.org/10.1080/mmy.39.1.55.66
doi: 10.1080/mmy.39.1.55.66
pubmed: 11800269
Egusa S, Kitaoka T, Goto M, Wariishi H (2007) Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium. Angew Chem Int Ed 46:2063–2065. https://doi.org/10.1002/anie.200603981
doi: 10.1002/anie.200603981
Egusa S, Yokota S, Tanaka K, Esaki K, Okutani Y, Ogawa Y, Kitaoka T, Goto M, Wariishi H (2009) Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium. J Mater Chem 19:1836–1842. https://doi.org/10.1039/b819025a
doi: 10.1039/b819025a
Egusa S, Kitaoka T, Igarashi K, Samejima M, Goto M, Wariishi H (2010) Preparation and enzymatic behavior of surfactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media. J Mol Catal B Enzym 67:225–230. https://doi.org/10.1016/j.molcatb.2010.08.010
doi: 10.1016/j.molcatb.2010.08.010
Fushinobu S, Hidaka M, Hayashi AM, Wakagi T, Shoun H, Kitaoka M (2011) Interactions between glycoside hydrolase family 94 cellobiose phosphorylase and glucosidase inhibitors. J Appl Glycosci 58:91–97. https://doi.org/10.5458/jag.jag.jag-2010_022
doi: 10.5458/jag.jag.jag-2010_022
Geys R, Soetaert W, Van Bogaert INA (2014) Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72. https://doi.org/10.1016/j.copbio.2014.06.002
doi: 10.1016/j.copbio.2014.06.002
pubmed: 24995572
Goldemberg SH, Maréchal LR, De Souza BC (1966) β-1,3-oligoglucan: orthophosphate glucosyltransferase from Euglena gracilis. J Biol Chem 241:45–50. https://doi.org/10.1016/0005-2744(67)90226-4
doi: 10.1016/0005-2744(67)90226-4
pubmed: 5901055
Greenway F, O’Neil CE, Stewart L, Rood J, Keenan M, Martin R (2007) Fourteen weeks of treatment with Viscofiber® increased fasting levels of glucagon-like peptide-1 and peptide-YY. J Med Food 10:720–724. https://doi.org/10.1089/jmf.2007.405
doi: 10.1089/jmf.2007.405
pubmed: 18158848
Hamura K, Saburi W, Abe S, Morimoto N, Taguchi H, Mori H, Matsui H (2012) Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis. Biosci Biotechnol Biochem 76:812–818. https://doi.org/10.1271/bbb.110954
doi: 10.1271/bbb.110954
pubmed: 22484959
Hamura K, Saburi W, Matsui H, Mori H (2013) Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Carbohydr Res 379:21–25. https://doi.org/10.1016/j.carres.2013.06.010
doi: 10.1016/j.carres.2013.06.010
pubmed: 23845516
Hidaka M, Kitaoka M, Hayashi K, Wakagi T, Shoun H, Fushinobu S (2004) Crystallization and preliminary X-ray analysis of cellobiose phosphorylase from Cellvibrio gilvus. Acta Crystallogr Sect D Biol Crystallogr 60:1877–1878. https://doi.org/10.1107/S0907444904017767
doi: 10.1107/S0907444904017767
Hidaka M, Kitaoka M, Hayashi K, Wakagi T, Shoun H, Fushinobu S (2006) Structural dissection of the reaction mechanism of cellobiose phosphorylase. Biochem J 398:37–43. https://doi.org/10.1042/BJ20060274
doi: 10.1042/BJ20060274
pubmed: 16646954
pmcid: 1525018
Hiraishi M, Igarashi K, Kimura S, Wada M, Kitaoka M, Samejima M (2009) Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase. Carbohydr Res 344:2468–2473. https://doi.org/10.1016/j.carres.2009.10.002
doi: 10.1016/j.carres.2009.10.002
pubmed: 19879558
Isono N, Tamamoto Y, Saburi W (2013) β-1,3-glucan manufacturing method. US8530202B2
Ito F, Iwasaki T, Mikami T (1994) Production of laminarioligosaccharide. JPH06113874A
Jamois F, Le Goffic F, Yvin JC, Plusquellec D, Ferrières V (2008) How to improve chemical synthesis of laminaribiose on a large scale. Open Glycosci 1:19–24. https://doi.org/10.2174/1875398100801010019
doi: 10.2174/1875398100801010019
Kauss H, Kriebitzsch C (1969) Demonstration and partial purification of A β-(1→3)-glucan phosphorylase. Biochem Biophys Res Commun 35:926–930. https://doi.org/10.1016/0006-291X(69)90713-X
doi: 10.1016/0006-291X(69)90713-X
pubmed: 5791530
Kitaoka M (2015) Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 99:8377–8390. https://doi.org/10.1007/s00253-015-6927-0
doi: 10.1007/s00253-015-6927-0
pubmed: 26293338
Kitaoka M, Sasaki T, Taniguchi H (1991a) Production of cellobiose. JPH03130086A
Kitaoka M, Sasaki T, Taniguchi H (1991b) Synthesis of laminarioligosaccharides using crude extract of Euglena gracilis Z cells. Agric Biol Chem 55:1431–1432. https://doi.org/10.1271/bbb1961.55.1431
doi: 10.1271/bbb1961.55.1431
Kitaoka M, Sasaki T, Taniguchi H (1992) Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase. J Biochem 112:40–44. https://doi.org/10.1093/oxfordjournals.jbchem.a123862
doi: 10.1093/oxfordjournals.jbchem.a123862
pubmed: 1429509
Kitaoka M, Sasaki T, Taniguchi H (1993) Purification and properties of laminaribiose phosphorylase (EC 2.4. 1.31) from Euglena gracilis Z. Arch Biochem Biophys 304:508–514. https://doi.org/10.1006/abbi.1993.1383
doi: 10.1006/abbi.1993.1383
pubmed: 8346926
Kitaoka M, Matsuoka Y, Mori K, Nishimoto M, Hayashi K (2012) Characterization of a bacterial laminaribiose phosphorylase. Biosci Biotechnol Biochem 76:343–348. https://doi.org/10.1271/bbb.110772
doi: 10.1271/bbb.110772
pubmed: 22313784
Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084. https://doi.org/10.1021/ja00008a042
doi: 10.1021/ja00008a042
Kobayashi K, Nakajima M, Aramasa H, Kimura S, Iwata T, Nakai H, Taguchi H (2019) Large-scale preparation of β-1,2-glucan using quite a small amount of sophorose. Biosci Biotechnol Biochem 83:1867–1874. https://doi.org/10.1080/09168451.2019.1630257
doi: 10.1080/09168451.2019.1630257
pubmed: 31189457
Koch TJ, Häßler T, Kipping F (2016) Process for the enzymatic preparation of a product glucoside and of a co-product from an educt glucoside. WO2016038142A1
Koch TJ, Häßler T, Brucher B, Vogel A (2017) Cellobiose phosphorylase. EP3191586B1
Krishnareddy M, Kim Y-K, Kitaoka M, Mori Y, Hayashi K (2002) Cellodextrin phosphorylase from Clostridium thermocellum YM4 strain expressed in Escherichia coli. J Appl Glycosci 49:1–8. https://doi.org/10.5458/jag.49.1
doi: 10.5458/jag.49.1
Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA (2018) Identification of Euglena gracilis β-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem 293:2865–2876. https://doi.org/10.1074/jbc.RA117.000936
doi: 10.1074/jbc.RA117.000936
pubmed: 29317507
pmcid: 5827456
Kuhaudomlarp S, Pergolizzi G, Patron NJ, Henrissat B, Field RA (2019a) Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. J Biol Chem 294:6483–6493. https://doi.org/10.1074/jbc.RA119.007712
doi: 10.1074/jbc.RA119.007712
pubmed: 30819804
pmcid: 6484121
Kuhaudomlarp S, Stevenson CEM, Lawson DM, Field RA (2019b) The structure of a GH149 β-(1→3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1→3)-glucose (laminaribiose) phosphorylase. Proteins 87:885–892. https://doi.org/10.1002/prot.25745
doi: 10.1002/prot.25745
pubmed: 31134667
pmcid: 6771811
Kuhaudomlarp S, Walpole S, Stevenson CEM, Nepogodiev SA, Lawson DM, Angulo J, Field RA (2019c) Unravelling the specificity of laminaribiose phosphorylase from Paenibacillus sp. YM-1 towards donor substrates glucose/mannose 1-phosphate by using X-ray crystallography and saturation transfer difference NMR spectroscopy. ChemBioChem 20:181–192. https://doi.org/10.1002/cbic.201800260
doi: 10.1002/cbic.201800260
pubmed: 29856496
Kumar K, Rajulapati V, Goyal A (2020) In vitro prebiotic potential, digestibility and biocompatibility properties of laminari-oligosaccharides produced from curdlan by β-1,3-endoglucanase from Clostridium thermocellum. 3 Biotech 10:241. https://doi.org/10.1007/s13205-020-02234-0
Liang Y, Zhu L, Gao M, Wu J, Zhan X (2018) Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Prep Biochem Biotechnol 48:446–456. https://doi.org/10.1080/10826068.2018.1452259
doi: 10.1080/10826068.2018.1452259
pubmed: 29561218
Liu N, Fosses A, Kampik C, Parsiegla G, Denis Y, Vita N, Fierobe HP, Perret S (2019) In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism. Biotechnol Biofuels 12:208. https://doi.org/10.1186/s13068-019-1549-x
Lombard V, Golaconda RH, Drula E, Coutinho P, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178
doi: 10.1093/nar/gkt1178
pubmed: 24270786
pmcid: 24270786
Lou J, Dawson KA, Strobel HJ (1996) Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Appl Environ Microbiol 62:1770–1773. https://doi.org/10.1128/aem.62.5.1770-1773.1996
doi: 10.1128/aem.62.5.1770-1773.1996
pubmed: 8633876
pmcid: 167952
Luley-Goedl C, Nidetzky B (2010) Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences. Biotechnol J 5:1324–1338. https://doi.org/10.1002/biot.201000217
doi: 10.1002/biot.201000217
pubmed: 21154671
Maréchal LR (1967) β-1,3-Oligoglucan: orthophosphate glucosyltransferases from Euglena gracilis. II. Comparative studies between laminaribiose- and β-1,3-oligoglucan phosphorylase. Biochim Biophys Acta 146:431–442. https://doi.org/10.1016/0005-2744(67)90227-6
doi: 10.1016/0005-2744(67)90227-6
pubmed: 6066292
Maréchal LR, Goldemberg SH (1963) Laminaribiose phosphorylase from Euglena gracilis. Biochem Biophys Res Commun 13:106–109. https://doi.org/10.1016/0006-291X(63)90172-4
doi: 10.1016/0006-291X(63)90172-4
Mikkola S (2020) Nucleotide sugars in chemistry and biology. Molecules 25:5755. https://doi.org/10.3390/molecules25235755
doi: 10.3390/molecules25235755
pmcid: 7729866
Mitsuyoshi S, Okamoto K, Yamada K (2001) Laminaribiose phosphorylase, process for producing the same and process for producing laminarioligosaccharide by using the enzyme. WO2001079475
Morgan KR, Ofman DJ (1998) Glucagel, a gelling β-glucan from barley. Cereal Chem 75:879–881. https://doi.org/10.1094/CCHEM.1998.75.6.879
doi: 10.1094/CCHEM.1998.75.6.879
Müller C, Hartig D, Vorländer K, Sass AC, Scholl S, Jördening H-J (2017a) Chitosan-based hybrid immobilization in bienzymatic reactions and its application to the production of laminaribiose. Bioprocess Biosyst Eng 40:1399–1410. https://doi.org/10.1007/s00449-017-1797-8
doi: 10.1007/s00449-017-1797-8
pubmed: 28601941
Müller C, Ortmann T, Abi A, Hartig D, Scholl S, Jördening H-J (2017b) Immobilization and characterization of E. gracilis extract with enriched laminaribiose phosphorylase activity for bienzymatic production of laminaribiose. Appl Biochem Biotechnol 182:197–215. https://doi.org/10.1007/s12010-016-2320-4
doi: 10.1007/s12010-016-2320-4
pubmed: 27848198
Nakai H, Hachem MA, Petersen BO, Westphal Y, Mannerstedt K, Baumann MJ, Dilokpimol A, Schols HA, Duus JØ, Svensson B (2010) Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Biochimie 92:1818–1826. https://doi.org/10.1016/j.biochi.2010.07.013
doi: 10.1016/j.biochi.2010.07.013
pubmed: 20678539
Nakai H, Kitaoka M, Svensson B, Ohtsubo K (2013) Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 17:301–309. https://doi.org/10.1016/j.cbpa.2013.01.006
doi: 10.1016/j.cbpa.2013.01.006
pubmed: 23403067
Nakajima M, Toyoizumi H, Abe K, Nakai H, Taguchi H, Kitaoka M (2014) 1,2-β-Oligoglucan phosphorylase from Listeria innocua. PLoS One 9:e92353. https://doi.org/10.1371/journal.pone.0092353
doi: 10.1371/journal.pone.0092353
pubmed: 24647662
pmcid: 3960220
Nakajima M, Tanaka N, Furukawa N, Nihira T, Kodutsumi Y, Takahashi Y, Sugimoto N, Miyanaga A, Fushinobu S, Taguchi H, Nakai H (2017) Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans. Sci Rep 7:42671. https://doi.org/10.1038/srep42671
doi: 10.1038/srep42671
pubmed: 28198470
pmcid: 5309861
Nidetzky B, Zhong C (2020) Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 107633: https://doi.org/10.1016/j.biotechadv.2020.107633
Nie S, Cui SW, Xie M (2018) Beta-glucans and their derivatives. In: Cui SW, Xie M (eds) Nie S. Academic Press, Bioactive polysaccharides, pp 99–141
Nihira T, Saito Y, Kitaoka M, Nishimoto M, Otsubo K, Nakai H (2012) Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides. Carbohydr Res 361:49–54. https://doi.org/10.1016/j.carres.2012.08.006
doi: 10.1016/j.carres.2012.08.006
pubmed: 22982171
O’Neill EC, Field RA (2015) Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 403:23–37. https://doi.org/10.1016/j.carres.2014.06.010
doi: 10.1016/j.carres.2014.06.010
pubmed: 25060838
pmcid: 4336185
O’Neill EC, Pergolizzi G, Stevenson CEM, Lawson DM, Nepogodiev SA, Field RA (2017) Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis. Carbohydr Res 8:118–132. https://doi.org/10.1016/j.carres.2017.07.005
doi: 10.1016/j.carres.2017.07.005
Ogawa Y, Noda K, Kimura S, Kitaoka M, Wada M (2014) Facile preparation of highly crystalline lamellae of (1→3)-β-D-glucan using an extract of Euglena gracilis. Int J Biol Macromol 64:415–419. https://doi.org/10.1016/j.ijbiomac.2013.12.027
Otsuka M, Ishida A, Nakayama Y, Saito M, Yamazaki M, Murakami H, Nakamura Y, Matsumoto M, Mamoto K, Takada R (2004) Dietary supplementation with cellooligosaccharide improves growth performance in weanling pigs. Anim Sci J 75:225–229. https://doi.org/10.1111/j.1740-0929.2004.00180.x
doi: 10.1111/j.1740-0929.2004.00180.x
Percy A, Ono H, Hayashi K (1998) Acceptor specificity of cellobiose phosphorylase from Cellvibrio gilvus: synthesis of three branched trisaccharides. Carbohydr Res 308:423–429. https://doi.org/10.1016/S0008-6215(98)00109-8
doi: 10.1016/S0008-6215(98)00109-8
pubmed: 9711833
Petrović DM, Kok I, Woortman AJJ, Ćirić J, Loos K (2015) Characterization of oligocellulose synthesized by reverse phosphorolysis using different cellodextrin phosphorylases. Anal Chem 87:9639–9646. https://doi.org/10.1021/acs.analchem.5b01098
doi: 10.1021/acs.analchem.5b01098
pubmed: 26291473
Pokusaeva K, O’Connell-Motherway M, Zomer A, MacSharry J, Fitzgerald GF, van Sinderen D (2011) Cellodextrin utilization by Bifidobacterium breve UCC2003. Appl Environ Microbiol 77:1681–1690. https://doi.org/10.1128/aem.01786-10
doi: 10.1128/aem.01786-10
pubmed: 21216899
pmcid: 3067287
Putta S, Yarla NS, Lakkappa DB, Imandi SB, Malla RR, Chaitanya AK, Chari BPV, Saka S, Vechalapu RR, Kamal MA, Tarasov VV, Chubarev VN, Kumar KS, Aliev G (2018) Probiotics: supplements, food, pharmaceutical industry. In: Grumezescu AM, Holban AM (eds) Therapeutic, probiotic, and unconventional foods, 1st edn. Academic Press, London, pp 15–25
Rahar S, Swami G, Nagpal N, Nagpal M, Singh G (2011) Preparation, characterization, and biological properties of β-glucans. J Adv Pharm Technol Res 2:94–103. https://doi.org/10.4103/2231-4040.82953
doi: 10.4103/2231-4040.82953
pubmed: 22171300
pmcid: 3217690
Rajashekhara E, Kitaoka M, Kim YK, Hayashi K (2002) Characterization of a cellobiose phosphorylase from a hyperthermophilic Eubacterium, Thermotoga maritima MSB8. Biosci Biotechnol Biochem 66:2578–2586. https://doi.org/10.1271/bbb.66.2578
doi: 10.1271/bbb.66.2578
pubmed: 12596851
Reichenbecher M, Lottspeich F, Bronnenmeier K (1997) Purification and properties of a celiobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 247:262–267. https://doi.org/10.1111/j.1432-1033.1997.00262.x
doi: 10.1111/j.1432-1033.1997.00262.x
pubmed: 9249035
Ronchera-Oms CL, Jiménez NV, Peidro J (1995) Stability of parenteral nutrition admixtures containing organic phosphates. Clin Nutr 14:373–380. https://doi.org/10.1016/S0261-5614(95)80055-7
doi: 10.1016/S0261-5614(95)80055-7
pubmed: 16843959
Sakamoto K, Lochhead RY, Maibach HI, Yamashita Y (2017) Cosmetic science and technology: theoretical principles and applications, 1st edn. Elsevier, Amsterdam
Samain E, Lancelon-Pin C, Férigo F, Moreau V, Chanzy H, Heyraud A, Driguez H (1995) Phosphorolytic synthesis of cellodextrins. Carbohydr Res 271:217–226. https://doi.org/10.1016/0008-6215(95)00022-L
doi: 10.1016/0008-6215(95)00022-L
Sawano T, Saburi W, Hamura K, Matsui H, Mori H (2013) Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. FEBS J 280:4463–4473. https://doi.org/10.1111/febs.12408
doi: 10.1111/febs.12408
pubmed: 23802549
Sheth K, Alexander K (1969) Purification and glucosyltransferase properties: orthophosphate glucosyltransferase from Clostridium thermocellum. J Biol Chem 244:457–464
doi: 10.1016/S0021-9258(18)94451-0
Shi L (2016) Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int J Biol Macromol 92:37–48. https://doi.org/10.1016/j.ijbiomac.2016.06.100
doi: 10.1016/j.ijbiomac.2016.06.100
pubmed: 27377457
pmcid: 7124366
Shibata S, Nishikawa Y, Takeda T, Tanaka M, Fukuoka F, Nakanishi M (1968) Studies on the chemical structures of the new glucans isolated from Gyrophora esculenta Miyoshi and Lasallia papulosa (Ach.) Llano and their inhibiting effect on implanted sarcoma 180 in mice. Chem Pharm Bull 16:1639–1641. https://doi.org/10.1248/cpb.16.1639
doi: 10.1248/cpb.16.1639
Shintate K, Kitaoka M, Kim YK, Hayashi K (2003) Enzymatic synthesis of a library of β-(1→4) hetero-D-glucose and D-xylose-based oligosaccharides employing cellodextrin phosphorylase. Carbohydr Res 338:1981–1990. https://doi.org/10.1016/S0008-6215(03)00314-8
doi: 10.1016/S0008-6215(03)00314-8
pubmed: 14499574
Sibakov J, Myllymäki O, Holopainen U, Kaukovirta-Norja A, Hietaniemi V, Pihlava JM, Lehtinen P, Poutanen K (2012) β-Glucan extraction methods from oats: minireview. Agro Food Ind Hi Tech 23:10–12 https://www.teknoscienze.com/tks_article/minireview-glucan-extraction-methods-from-oats/
Singh RP, Pergolizzi G, Nepogodiev SA, De Andrade P, Kuhaudomlarp S, Field RA (2020) Preparative and kinetic analysis of β-1,4- and β-1,3-glucan phosphorylases informs access to human milk oligosaccharide fragments and analogues thereof. ChemBioChem 21:1043–1049. https://doi.org/10.1002/cbic.201900440
doi: 10.1002/cbic.201900440
pubmed: 31657512
Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761–769. https://doi.org/10.1128/jb.139.3.761-769.1979
doi: 10.1128/jb.139.3.761-769.1979
pubmed: 39061
pmcid: 218020
Suzuki M, Kaneda K, Nakai Y, Kitaoka M, Taniguchi H (2009) Synthesis of cellobiose from starch by the successive actions of two phosphorylases. New Biotechnol 26:137–142. https://doi.org/10.1016/j.nbt.2009.07.004
doi: 10.1016/j.nbt.2009.07.004
Tanaka K, Kawaguchi T, Imada Y, Ooi T, Arai M (1995) Purification and properties of cellobiose phosphorylase from Clostridium thermocellum. J Ferment Bioeng 79:212–216. https://doi.org/10.1016/0922-338X(95)90605-Y
doi: 10.1016/0922-338X(95)90605-Y
Tran GH, Desmet T, De Groeve MRM, Soetaert W (2011) Probing the active site of cellodextrin phosphorylase from Clostridium stercorarium: kinetic characterization, ligand docking, and site-directed mutagenesis. Biotechnol Prog 27:326–332. https://doi.org/10.1002/btpr.555
Tran GH, Desmet T, Saerens K, Waegeman H, Vandekerckhove S, D’hooghe M, Van Bogaert INA, Soetaert W (2012) Biocatalytic production of novel glycolipids with cellodextrin phosphorylase. Bioresour Technol 115:84–87. https://doi.org/10.1016/j.biortech.2011.09.085
Ubiparip Z, Beerens K, Franceus J, Vercauteren R, Desmet T (2018) Thermostable alpha-glucan phosphorylases: characteristics and industrial applications. Appl Microbiol Biotechnol 102:8187–8202. https://doi.org/10.1007/s00253-018-9233-9
doi: 10.1007/s00253-018-9233-9
pubmed: 30043268
Ubiparip Z, Moreno DS, Beerens K, Desmet T (2020) Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose. Appl Microbiol Biotechnol 104:8327–8337. https://doi.org/10.1007/s00253-020-10820-8
doi: 10.1007/s00253-020-10820-8
pubmed: 32803296
pmcid: 7471185
Van Hoorebeke A, Stout J, Kyndt J, De Groeve MRM, Dix I, Desmet T, Soetaert W, Van Beeumen J, Savvides SN (2010) Crystallization and X-ray diffraction studies of cellobiose phosphorylase from Cellulomonas uda. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:346–351. https://doi.org/10.1107/S1744309110002642
doi: 10.1107/S1744309110002642
pubmed: 20208178
pmcid: 2833054
Vetvicka V, Vannucci L, Sima P, Richter J (2019) Beta glucan: supplement or drug? From laboratory to clinical trials. Molecules 24:1251. https://doi.org/10.3390/molecules24071251
doi: 10.3390/molecules24071251
pmcid: 6479769
Wu Y, Mao G, Fan H, Song A, Zhang Y-HP, Chen H (2017) Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Sci Rep 7:4849. https://doi.org/10.1038/s41598-017-05289-x
doi: 10.1038/s41598-017-05289-x
pubmed: 28687766
pmcid: 5501786
Yamamoto Y, Kawashima D, Hashizume A, Hisamatsu M, Isono N (2013) Purification and characterization of 1,3-β-D-glucan phosphorylase from Ochromonas danica. Biosci Biotechnol Biochem 77:1949–1954. https://doi.org/10.1271/bbb.130411
doi: 10.1271/bbb.130411
pubmed: 24018693
Ye X, Zhang C, Zhang Y-HP (2012) Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Mol BioSyst 8:1815–1823. https://doi.org/10.1039/c2mb05492b
doi: 10.1039/c2mb05492b
pubmed: 22511238
Yernool DA, McCarthy JK, Eveleigh DE, Bok JD (2000) Cloning and characterization of the glucooligosaccharide catabolic pathway α-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol 182:5172–5179. https://doi.org/10.1128/JB.182.18.5172-5179.2000
doi: 10.1128/JB.182.18.5172-5179.2000
pubmed: 10960102
pmcid: 94666
Zhang Y-HP, Lynd LR (2006) Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Appl Microbiol Biotechnol 70:123–129. https://doi.org/10.1007/s00253-005-0278-1
doi: 10.1007/s00253-005-0278-1
pubmed: 16402169
Zhang H, Palma AS, Zhang Y, Childs RA, Liu Y, Mitchell DA, Guidolin LS, Weigel W, Mulloy B, Ciocchini AE, Feizi T, Chai W (2016) Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system. Glycobiology 26:1086–1096. https://doi.org/10.1093/glycob/cww041
doi: 10.1093/glycob/cww041
pubmed: 27053576
pmcid: 5072146
Zhong C, Nidetzky B (2019) Three-enzyme phosphorylase cascade for integrated production of short-chain cellodextrins. Biotechnol J 15: https://doi.org/10.1002/biot.201900349
Zhong C, Luley-Goedl C, Nidetzky B (2019) Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase. Biotechnol Bioeng 116:2146–2155. https://doi.org/10.1002/bit.27008
doi: 10.1002/bit.27008
pubmed: 31062868
pmcid: 6767486
Zhong C, Duić B, Bolivar JM, Nidetzky B (2020a) Three-enzyme phosphorylase cascade immobilized on solid support for biocatalytic synthesis of cello-oligosaccharides. ChemCatChem 12:1350–1358. https://doi.org/10.1002/cctc.201901964
doi: 10.1002/cctc.201901964
Zhong C, Ukowitz C, Domig K, Nidetzky B (2020b) Short-chain cello-oligosaccharides: intensification and scale-up of their enzymatic production and selective growth promotion among probiotic bacteria. J Agric Food Chem 68:8557–8567. https://doi.org/10.1021/acs.jafc.0c02660
doi: 10.1021/acs.jafc.0c02660
pubmed: 32687709
pmcid: 7458430
Zhu F, Du B, Xu B (2016) A critical review on production and industrial applications of beta-glucans. Food Hydrocoll 52:275–288. https://doi.org/10.1016/j.foodhyd.2015.07.003
doi: 10.1016/j.foodhyd.2015.07.003