Mitochondrial matrix proteases: quality control and beyond.

ClpXP LONP1 metabolism mitochondria mitochondrial matrix proteases protein quality control regulated proteolysis respiratory chain complexes

Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
11 2022
Historique:
revised: 22 03 2021
received: 18 11 2020
accepted: 07 05 2021
pubmed: 11 5 2021
medline: 18 11 2022
entrez: 10 5 2021
Statut: ppublish

Résumé

To ensure correct function, mitochondria have developed several mechanisms of protein quality control (QC). Protein homeostasis highly relies on chaperones and proteases to maintain proper folding and remove damaged proteins that might otherwise form cell-toxic aggregates. Besides quality control, mitochondrial proteases modulate and regulate many essential functions, such as trafficking, processing and activation of mitochondrial proteins, mitochondrial dynamics, mitophagy and apoptosis. Therefore, the impaired function of mitochondrial proteases is associated with various pathological conditions, including cancer, metabolic syndromes and neurodegenerative disorders. This review recapitulates and discusses the emerging roles of two major proteases of the mitochondrial matrix, LON and ClpXP. Although commonly acknowledge for their protein quality control role, recent advances have uncovered several highly regulated processes controlled by the LON and ClpXP connected to mitochondrial gene expression and respiratory chain function maintenance. Furthermore, both proteases have been lately recognized as potent targets for anticancer therapies, and we summarize those findings.

Identifiants

pubmed: 33971087
doi: 10.1111/febs.15964
doi:

Substances chimiques

Peptide Hydrolases EC 3.4.-
Mitochondrial Proteins 0
Molecular Chaperones 0
Endopeptidases EC 3.4.-

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7128-7146

Informations de copyright

© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Rabinowitz M (1973) Protein synthesis and turnover in normal and hypertrophied heart. Am J Cardiol 31, 202-210.
Fletcher MJ & Sanadi DR (1961) Turnover of rat-liver mitochondria. Biochim Biophys Acta 51, 356-360.
Chan XC, Black CM, Lin AJ, Ping P & Lau E (2015) Mitochondrial protein turnover: methods to measure turnover rates on a large scale. J Mol Cell Cardiol 78, 54-61.
Lau E, Huang D, Cao Q, Dincer TU, Black CM, Lin AJ, Lee JM, Wang D, Liem DA, Lam MP et al. (2015) Spatial and temporal dynamics of the cardiac mitochondrial proteome. Expert Rev Proteomics 12, 133-146.
Snider J, Wang D, Bogenhagen DF & Haley JD (2019) Pulse SILAC approaches to the measurement of cellular dynamics. Adv Exp Med Biol 1140, 575-583.
Szczepanowska K & Trifunovic A (2021) Tune instead of destroy: how proteolysis keeps OXPHOS in shape. Biochim Biophys Acta Bioenerg 1862, 148365.
Karunadharma PP, Basisty N, Chiao YA, Dai DF, Drake R, Levy N, Koh WJ, Emond MJ, Kruse S, Marcinek D et al. (2015) Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB J 29, 3582-3592.
Song J, Herrmann JM & Becker T (2021) Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol 22, 54-70.
Kramer L, Groh C & Herrmann JM (2021) The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett 595, 1223-1238.
Tatsuta T & Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27, 306-314.
van der Bliek AM, Shen Q & Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5, a011072.
Lemasters JJ (2014) Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (type 3). Redox Biol 2, 749-754.
Marino G, Niso-Santano M, Baehrecke EH & Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15, 81-94.
Gottesman S, Roche E, Zhou Y & Sauer RT (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338-1347.
Varshavsky A (2019) N-degron and C-degron pathways of protein degradation. Proc Natl Acad Sci USA 116, 358-366.
Mahmoud SA & Chien P (2018) Regulated proteolysis in bacteria. Annu Rev Biochem 87, 677-696.
Pickart CM & Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5, 177-187.
Voos W & Rottgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592, 51-62.
Quiros PM, Langer T & Lopez-Otin C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16, 345-359.
Gomez-Fabra Gala M & Vogtle FN (2021) Mitochondrial proteases in human diseases. FEBS Lett 595, 1205-1222.
Hanson PI & Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6, 519-529.
Neuwald AF, Aravind L, Spouge JL & Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9, 27-43.
Lenzen CU, Steinmann D, Whiteheart SW & Weis WI (1998) Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525-536.
Voos W & Pollecker K (2020) The mitochondrial Lon protease: novel functions off the beaten track? Biomolecules 10, 253.
Wang N, Gottesman S, Willingham MC, Gottesman MM & Maurizi MR (1993) A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci USA 90, 11247-11251.
Pomatto LC, Raynes R & Davies KJ (2017) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 92, 739-753.
Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30, 465-506.
Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ, Kwon KK, De Donatis GM, Lee JH, Maurizi MR et al. (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29, 3520-3530.
Lee AY, Chen YD, Chang YY, Lin YC, Chang CF, Huang SJ, Wu SH & Hsu CH (2014) Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease. Acta Crystallogr D 70, 218-230.
Kereiche S, Kovacik L, Bednar J, Pevala V, Kunova N, Ondrovicova G, Bauer J, Ambro L, Bellova J, Kutejova E et al. (2016) The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease. Sci Rep 6, 33631.
Stahlberg H, Kutejova E, Suda K, Wolpensinger B, Lustig A, Schatz G, Engel A & Suzuki CK (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci USA 96, 6787-6790.
Nimmo GAM, Venkatesh S, Pandey AK, Marshall CR, Hazrati LN, Blaser S, Ahmed S, Cameron J, Singh K, Ray PN et al. (2019) Bi-allelic mutations of LONP1 encoding the mitochondrial LonP1 protease cause pyruvate dehydrogenase deficiency and profound neurodegeneration with progressive cerebellar atrophy. Hum Mol Genet 28, 290-306.
Quiros PM, Espanol Y, Acin-Perez R, Rodriguez F, Barcena C, Watanabe K, Calvo E, Loureiro M, Fernandez-Garcia MS, Fueyo A et al. (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8, 542-556.
Dikoglu E, Alfaiz A, Gorna M, Bertola D, Chae JH, Cho TJ, Derbent M, Alanay Y, Guran T, Kim OH et al. (2015) Mutations in LONP1, a mitochondrial matrix protease, cause CODAS syndrome. Am J Med Genet A 167, 1501-1509.
Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S et al. (2015) CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 96, 121-135.
Peter B, Waddington CL, Olahova M, Sommerville EW, Hopton S, Pyle A, Champion M, Ohlson M, Siibak T, Chrzanowska-Lightowlers ZMA et al. (2018) Defective mitochondrial protease LonP1 can cause classical mitochondrial disease. Hum Mol Genet 27, 1743-1753.
Hannah-Shmouni F, MacNeil L, Brady L, Nilsson MI & Tarnopolsky M (2019) Expanding the clinical spectrum of LONP1-related mitochondrial cytopathy. Front Neurol 10, 981.
Besse A, Brezavar D, Hanson J, Larson A & Bonnen PE (2020) LONP1 de novo dominant mutation causes mitochondrial encephalopathy with loss of LONP1 chaperone activity and excessive LONP1 proteolytic activity. Mitochondrion 51, 68-78.
Baker TA & Sauer RT (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823, 15-28.
Haynes CM, Petrova K, Benedetti C, Yang Y & Ron D (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13, 467-480.
Kang SG, Dimitrova MN, Ortega J, Ginsburg A & Maurizi MR (2005) Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J Biol Chem 280, 35424-35432.
Liu K, Ologbenla A & Houry WA (2014) Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Crit Rev Biochem Mol Biol 49, 400-412.
Lowth BR, Kirstein-Miles J, Saiyed T, Brotz-Oesterhelt H, Morimoto RI, Truscott KN & Dougan DA (2012) Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. J Struct Biol 179, 193-201.
Damerau K & St John AC (1993) Role of Clp protease subunits in degradation of carbon starvation proteins in Escherichia coli. J Bacteriol 175, 53-63.
Jenal U & Fuchs T (1998) An essential protease involved in bacterial cell-cycle control. EMBO J 17, 5658-5669.
Jenkinson EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, Drummond MC, Khan SN, Naeem MA, Rauf B et al. (2013) Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet 92, 605-613.
Gispert S, Parganlija D, Klinkenberg M, Drose S, Wittig I, Mittelbronn M, Grzmil P, Koob S, Hamann A, Walter M et al. (2013) Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum Mol Genet 22, 4871-4887.
Fischer F, Weil A, Hamann A & Osiewacz HD (2013) Human CLPP reverts the longevity phenotype of a fungal ClpP deletion strain. Nat Commun 4, 1397.
Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH & Baker TA (2015) Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis. Cell 161, 858-867.
Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schagger H, Kerscher S & Brandt U (2004) Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim Biophys Acta 1658, 148-156.
Szczepanowska K, Senft K, Heidler J, Herholz M, Kukat A, Hohne MN, Hofsetz E, Becker C, Kaspar S, Giese H et al. (2020) A salvage pathway maintains highly functional respiratory complex I. Nat Commun 11, 1643.
Wagner I, Arlt H, van Dyck L, Langer T & Neupert W (1994) Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 13, 5135-5145.
Teichmann U, van Dyck L, Guiard B, Fischer H, Glockshuber R, Neupert W & Langer T (1996) Substitution of PIM1 protease in mitochondria by Escherichia coli Lon protease. J Biol Chem 271, 10137-10142.
Bezawork-Geleta A, Brodie EJ, Dougan DA & Truscott KN (2015) LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 5, 17397.
Bezawork-Geleta A, Saiyed T, Dougan DA & Truscott KN (2014) Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J 28, 1794-1804.
Gur E & Sauer RT (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 22, 2267-2277.
von Janowsky B, Major T, Knapp K & Voos W (2006) The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. J Mol Biol 357, 793-807.
Bender T, Lewrenz I, Franken S, Baitzel C & Voos W (2011) Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Mol Biol Cell 22, 541-554.
Suzuki CK, Suda K, Wang N & Schatz G (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264, 273-276.
Bota DA, Ngo JK & Davies KJ (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38, 665-677.
Bota DA & Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4, 674-680.
Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B & Bulteau AL (2010) Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem 285, 11445-11457.
Kent TA, Dreyer JL, Kennedy MC, Huynh BH, Emptage MH, Beinert H & Munck E (1982) Mossbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters. Proc Natl Acad Sci USA 79, 1096-1100.
Patel M, Day BJ, Crapo JD, Fridovich I & McNamara JO (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16, 345-355.
Flint DH, Smyk-Randall E, Tuminello JF, Draczynska-Lusiak B & Brown OR (1993) The inactivation of dihydroxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem 268, 25547-25552.
Khodagholi F, Shaerzadeh F & Montazeri F (2018) Mitochondrial aconitase in neurodegenerative disorders: role of a metabolism-related molecule in neurodegeneration. Curr Drug Targets 19, 973-985.
Pryde KR, Taanman JW & Schapira AH (2016) A LON-ClpP proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep 17, 2522-2531.
Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV & Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122.
Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT & Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21, 4411-4419.
Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Hoj PB & Hoogenraad NJ (1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240, 98-103.
Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP & Ron D (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117, 4055-4066.
Benedetti C, Haynes CM, Yang Y, Harding HP & Ron D (2006) Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229-239.
Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM & Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587-590.
Haynes CM & Ron D (2010) The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci 123, 3849-3855.
Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW & Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451-457.
Horibe T & Hoogenraad NJ (2007) The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS One 2, e835.
Ryan MT & Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76, 701-722.
Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, Konig T, Kukat A & Trifunovic A (2016) Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep 17, 953-964.
Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG & Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci USA 108, 13534-13539.
Dogan SA, Pujol C, Maiti P, Kukat A, Wang S, Hermans S, Senft K, Wibom R, Rugarli EI & Trifunovic A (2014) Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab 19, 458-469.
Quiros PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP & Auwerx J (2017) Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 216, 2027-2045.
Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, Vafai SB, Cox AG, Marutani E, Ichinose F et al. (2016) Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife 5, e10575.
Kuhl I, Miranda M, Atanassov I, Kuznetsova I, Hinze Y, Mourier A, Filipovska A & Larsson NG (2017) Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. Elife 6, e30952.
Costa-Mattioli M & Walter P (2020) The integrated stress response: from mechanism to disease. Science 368, eaat5314.
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A & Gorman AM (2016) The integrated stress response. EMBO Rep 17, 1374-1395.
Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M et al. (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15, 481-490.
Hori O, Ichinoda F, Tamatani T, Yamaguchi A, Sato N, Ozawa K, Kitao Y, Miyazaki M, Harding HP, Ron D et al. (2002) Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol 157, 1151-1160.
Matsushima Y, Goto Y & Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA 107, 18410-18415.
Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D & Suzuki CK (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49, 121-132.
Kasashima K, Sumitani M & Endo H (2011) Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells. Exp Cell Res 317, 210-220.
Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS & Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18, 231-236.
Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR & Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9, 265-276.
Agnes RS, Jernigan F, Shell JR, Sharma V & Lawrence DS (2010) Suborganelle sensing of mitochondrial cAMP-dependent protein kinase activity. J Am Chem Soc 132, 6075-6080.
Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF & Avadhani NG (2006) Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 281, 2061-2070.
Picchioni D, Antolin-Fontes A, Camacho N, Schmitz C, Pons-Pons A, Rodriguez-Escriba M, Machallekidou A, Guler MN, Siatra P, Carretero-Junquera M et al. (2019) Mitochondrial protein synthesis and mtDNA levels coordinated through an aminoacyl-tRNA synthetase subunit. Cell Rep 27, 40-47.e5.
Fu GK & Markovitz DM (1998) The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry 37, 1905-1909.
Lu B, Yadav S, Shah PG, Liu T, Tian B, Pukszta S, Villaluna N, Kutejova E, Newlon CS, Santos JH et al. (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282, 17363-17374.
Chung CH & Goldberg AL (1982) DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from Escherichia coli. Proc Natl Acad Sci USA 79, 795-799.
Sonezaki S, Okita K, Oba T, Ishii Y, Kondo A & Kato Y (1995) Protein substrates and heat shock reduce the DNA-binding ability of Escherichia coli Lon protease. Appl Microbiol Biotechnol 44, 484-488.
Liu T, Lu B, Lee I, Ondrovicova G, Kutejova E & Suzuki CK (2004) DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 279, 13902-13910.
Goke A, Schrott S, Mizrak A, Belyy V, Osman C & Walter P (2020) Mrx6 regulates mitochondrial DNA copy number in Saccharomyces cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Mol Biol Cell 31, 527-545.
Kunova N, Ondrovicova G, Bauer JA, Bellova J, Ambro L, Martinakova L, Kotrasova V, Kutejova E & Pevala V (2017) The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Sci Rep 7, 631.
Zurita Rendon O & Shoubridge EA (2018) LONP1 is required for maturation of a subset of mitochondrial proteins, and its loss elicits an integrated stress response. Mol Cell Biol 38, e00412-17.
Kasashima K, Sumitani M & Endo H (2012) Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX. Exp Cell Res 318, 2335-2343.
Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H, Kannengiesser C, Bergonia HA, Kafina MD, Karim Z, Gouya L et al. (2017) Mutation in human CLPX elevates levels of delta-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci USA 114, E8045-E8052.
Szczepanowska K, Maiti P, Kukat A, Hofsetz E, Nolte H, Senft K, Becker C, Ruzzenente B, Hornig-Do HT, Wibom R et al. (2016) CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels. EMBO J 35, 2566-2583.
Chatzispyrou IA, Alders M, Guerrero-Castillo S, Zapata Perez R, Haagmans MA, Mouchiroud L, Koster J, Ofman R, Baas F, Waterham HR et al. (2017) A homozygous missense mutation in ERAL1, encoding a mitochondrial rRNA chaperone, causes Perrault syndrome. Hum Mol Genet 26, 2541-2550.
Matsushima Y, Hirofuji Y, Aihara M, Yue S, Uchiumi T, Kaguni LS & Kang D (2017) Drosophila protease ClpXP specifically degrades DmLRPPRC1 controlling mitochondrial mRNA and translation. Sci Rep 7, 8315.
Siira SJ, Spahr H, Shearwood AJ, Ruzzenente B, Larsson NG, Rackham O & Filipovska A (2017) LRPPRC-mediated folding of the mitochondrial transcriptome. Nat Commun 8, 1532.
Major T, von Janowsky B, Ruppert T, Mogk A & Voos W (2006) Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol 26, 762-776.
Becker C, Kukat A, Szczepanowska K, Hermans S, Senft K, Brandscheid CP, Maiti P & Trifunovic A (2018) CLPP deficiency protects against metabolic syndrome but hinders adaptive thermogenesis. EMBO Rep 19, e45126.
Hofsetz E, Demir F, Szczepanowska K, Kukat A, Kizhakkedathu JN, Trifunovic A & Huesgen PF (2020) The mouse heart mitochondria N terminome provides insights into ClpXP-mediated proteolysis. Mol Cell Proteomics 19, 1330-1345.
Petereit J, Duncan O, Murcha MW, Fenske R, Cincu E, Cahn J, Pruzinska A, Ivanova A, Kollipara L, Wortelkamp S et al. (2020) Mitochondrial CLPP2 assists coordination and homeostasis of respiratory complexes. Plant Physiol 184, 148-164.
Maio N, Ghezzi D, Verrigni D, Rizza T, Bertini E, Martinelli D, Zeviani M, Singh A, Carrozzo R & Rouault TA (2016) Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB. Cell Metab 23, 292-302.
Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, Zhao R, St-Germain J, Heese LE, Egan G et al. (2019) Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35, 721-737.e9.
Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, Mattson R, Hurren R, Babovic S, Maclean N et al. (2015) Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 27, 864-876.
Martin LA, Kennedy BE & Karten B (2016) Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 48, 137-151.
Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, Braun S, Maurizi MR, Suzuki CK, Oppenheim AB et al. (2007) Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 21, 2164-2177.
Crewe C, Schafer C, Lee I, Kinter M & Szweda LI (2017) Regulation of pyruvate dehydrogenase kinase 4 in the heart through degradation by the Lon protease in response to mitochondrial substrate availability. J Biol Chem 292, 305-312.
Bonkovsky HL, Healey JF & Pohl J (1990) Purification and characterization of heme oxygenase from chick liver. Comparison of the avian and mammalian enzymes. Eur J Biochem 189, 155-166.
Tian Q, Li T, Hou W, Zheng J, Schrum LW & Bonkovsky HL (2011) Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286, 26424-26430.
Kardon JR, Moroco JA, Engen JR & Baker TA (2020) Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. Elife 9, e54387.
Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K & Furuyama K (2016) Novel mechanisms for heme-dependent degradation of ALAS1 protein as a component of negative feedback regulation of heme biosynthesis. J Biol Chem 291, 20516-20529.
Strack PR, Brodie EJ, Zhan H, Schuenemann VJ, Valente LJ, Saiyed T, Lowth BR, Angley LM, Perugini MA, Zeth K et al. (2020) Polymerase delta-interacting protein 38 (PDIP38) modulates the stability and activity of the mitochondrial AAA+ protease CLPXP. Commun Biol 3, 646.
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V et al. (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628-632.
Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, Helgason GV & Gottlieb E (2017) Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23, 1234-1240.
Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N et al. (2011) Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674-688.
Ghosh P, Vidal C, Dey S & Zhang L (2020) Mitochondria targeting as an effective strategy for cancer therapy. Int J Mol Sci 21, 3363.
Cheng CW, Kuo CY, Fan CC, Fang WC, Jiang SS, Lo YK, Wang TY, Kao MC & Lee AY (2013) Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 4, e681.
Wang HM, Cheng KC, Lin CJ, Hsu SW, Fang WC, Hsu TF, Chiu CC, Chang HW, Hsu CH & Lee AY (2010) Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 101, 2612-2620.
Bernstein SH, Venkatesh S, Li M, Lee J, Lu B, Hilchey SP, Morse KM, Metcalfe HM, Skalska J, Andreeff M et al. (2012) The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119, 3321-3329.
Nie X, Li M, Lu B, Zhang Y, Lan L, Chen L & Lu J (2013) Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One 8, e81084.
Zhu Y, Wang M, Lin H, Huang C, Shi X & Luo J (2002) Epidermal growth factor up-regulates the transcription of mouse lon homology ATP-dependent protease through extracellular signal-regulated protein kinase- and phosphatidylinositol-3-kinase-dependent pathways. Exp Cell Res 280, 97-106.
Pinti M, Gibellini L, De Biasi S, Nasi M, Roat E, O'Connor JE & Cossarizza A (2011) Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 11, 200-206.
Di K, Lomeli N, Wood SD, Vanderwal CD & Bota DA (2016) Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma. Oncotarget 7, 77457-77467.
Pinti M, Gibellini L, Liu Y, Xu S, Lu B & Cossarizza A (2015) Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 72, 4807-4824.
Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R, Nasi M, De Biasi S, Missiroli S, Carnevale G et al. (2014) Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 28, 5122-5135.
Bulteau AL & Bayot A (2011) Mitochondrial proteases and cancer. Biochim Biophys Acta 1807, 595-601.
Goto M, Miwa H, Suganuma K, Tsunekawa-Imai N, Shikami M, Mizutani M, Mizuno S, Hanamura I & Nitta M (2014) Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14, 76.
Kita K, Suzuki T & Ochi T (2012) Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 287, 18163-18172.
Venkatesh S, Li M, Saito T, Tong M, Rashed E, Mareedu S, Zhai P, Barcena C, Lopez-Otin C, Yehia G et al. (2019) Mitochondrial LonP1 protects cardiomyocytes from ischemia/reperfusion injury in vivo. J Mol Cell Cardiol 128, 38-50.
Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E & Matoba S (2014) Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail 7, 500-509.
Luo J, Zeng B, Tao C, Lu M & Ren G (2020) ClpP regulates breast cancer cell proliferation, invasion and apoptosis by modulating the Src/PI3K/Akt signaling pathway. PeerJ 8, e8754.
Seo JH, Rivadeneira DB, Caino MC, Chae YC, Speicher DW, Tang HY, Vaira V, Bosari S, Palleschi A, Rampini P et al. (2016) The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol 14, e1002507.
Nouri K, Feng Y & Schimmer AD (2020) Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis 11, 841.
Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F et al. (2017) A pathology atlas of the human cancer transcriptome. Science 357, eaan2507.
Allen JE, Kline CL, Prabhu VV, Wagner J, Ishizawa J, Madhukar N, Lev A, Baumeister M, Zhou L, Lulla A et al. (2016) Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget 7, 74380-74392.
Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K et al. (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11, 1082-1087.
Malik IT & Brotz-Oesterhelt H (2017) Conformational control of the bacterial Clp protease by natural product antibiotics. Nat Prod Rep 34, 815-831.
Wong KS, Mabanglo MF, Seraphim TV, Mollica A, Mao YQ, Rizzolo K, Leung E, Moutaoufik MT, Hoell L, Phanse S et al. (2018) Acyldepsipeptide analogs dysregulate human mitochondrial ClpP protease activity and cause apoptotic cell death. Cell Chem Biol 25, 1017-1030.e9.

Auteurs

Karolina Szczepanowska (K)

Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany.

Aleksandra Trifunovic (A)

Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH