Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes.
Aged
Alanine Transaminase
/ blood
Alkaline Phosphatase
/ blood
Cardiovascular Diseases
/ enzymology
Cohort Studies
Databases, Genetic
Female
Gene Expression Regulation, Enzymologic
/ genetics
Genetic Predisposition to Disease
Genetic Testing
Genome-Wide Association Study
Humans
Insulin Resistance
/ genetics
Lipid Metabolism
/ genetics
Liver
/ enzymology
Male
Mendelian Randomization Analysis
Metabolic Diseases
/ enzymology
Middle Aged
Polymorphism, Single Nucleotide
Risk Factors
White People
gamma-Glutamyltransferase
/ blood
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 05 2021
10 05 2021
Historique:
received:
13
07
2020
accepted:
05
02
2021
entrez:
11
5
2021
pubmed:
12
5
2021
medline:
3
6
2021
Statut:
epublish
Résumé
Serum concentration of hepatic enzymes are linked to liver dysfunction, metabolic and cardiovascular diseases. We perform genetic analysis on serum levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) using data on 437,438 UK Biobank participants. Replication in 315,572 individuals from European descent from the Million Veteran Program, Rotterdam Study and Lifeline study confirms 517 liver enzyme SNPs. Genetic risk score analysis using the identified SNPs is strongly associated with serum activity of liver enzymes in two independent European descent studies (The Airwave Health Monitoring study and the Northern Finland Birth Cohort 1966). Gene-set enrichment analysis using the identified SNPs highlights involvement in liver development and function, lipid metabolism, insulin resistance, and vascular formation. Mendelian randomization analysis shows association of liver enzyme variants with coronary heart disease and ischemic stroke. Genetic risk score for elevated serum activity of liver enzymes is associated with higher fat percentage of body, trunk, and liver and body mass index. Our study highlights the role of molecular pathways regulated by the liver in metabolic disorders and cardiovascular disease.
Identifiants
pubmed: 33972514
doi: 10.1038/s41467-021-22338-2
pii: 10.1038/s41467-021-22338-2
pmc: PMC8110798
doi:
Substances chimiques
gamma-Glutamyltransferase
EC 2.3.2.2
Alanine Transaminase
EC 2.6.1.2
Alkaline Phosphatase
EC 3.1.3.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2579Subventions
Organisme : NIDDK NIH HHS
ID : R56 DK101478
Pays : United States
Organisme : Medical Research Council
ID : MR/R0265051/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : K23 DK115897
Pays : United States
Organisme : Department of Health
Pays : United Kingdom
Organisme : British Heart Foundation
ID : SP/13/2/30111
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S019669/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL087679
Pays : United States
Organisme : Medical Research Council
ID : MR/R023484/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : RL1 MH083268
Pays : United States
Organisme : Medical Research Council
ID : MR/L01341X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R026505/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S03658X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L01632X/1
Pays : United Kingdom
Investigateurs
H Marike Boezen
(HM)
Lude Franke
(L)
Pim van der Harst
(P)
Gerjan Navis
(G)
Marianne Rots
(M)
Morris Swertz
(M)
Bruce H R Wolffenbuttel
(BHR)
Cisca Wijmenga
(C)
Zuhair K Ballas
(ZK)
Sujata Bhushan
(S)
Edward J Boyko
(EJ)
David M Cohen
(DM)
John Concato
(J)
Michaela Aslan
(M)
Hongyu Zhao
(H)
Joseph I Constans
(JI)
Louis J Dellitalia
(LJ)
Joseph M Fayad
(JM)
Ronald S Fernando
(RS)
Hermes J Florez
(HJ)
Melinda A Gaddy
(MA)
Saib S Gappy
(SS)
Gretchen Gibson
(G)
Michael Godschalk
(M)
Jennifer A Greco
(JA)
Samir Gupta
(S)
Salvador Gutierrez
(S)
Kimberly D Hammer
(KD)
Mark B Hamner
(MB)
John B Harley
(JB)
Adriana M Hung
(AM)
Mostaqul Huq
(M)
Robin A Hurley
(RA)
Pran R Iruvanti
(PR)
Douglas J Ivins
(DJ)
Frank J Jacono
(FJ)
Darshana N Jhala
(DN)
Laurence S Kaminsky
(LS)
Jon B Klein
(JB)
Suthat Liangpunsakul
(S)
Jack H Lichy
(JH)
Jennifer Moser
(J)
Grant D Huang
(GD)
Sumitra Muralidhar
(S)
Stephen M Mastorides
(SM)
Roy O Mathew
(RO)
Kristin M Mattocks
(KM)
Rachel McArdle
(R)
Paul N Meyer
(PN)
Laurence J Meyer
(LJ)
Jonathan P Moorman
(JP)
Timothy R Morgan
(TR)
Maureen Murdoch
(M)
Olaoluwa O Okusaga
(OO)
Kris-Ann K Oursler
(KK)
Nora R Ratcliffe
(NR)
Michael I Rauchman
(MI)
R Brooks Robey
(RB)
George W Ross
(GW)
Richard J Servatius
(RJ)
Satish C Sharma
(SC)
Scott E Sherman
(SE)
Elif Sonel
(E)
Peruvemba Sriram
(P)
Todd Stapley
(T)
Robert T Striker
(RT)
Neeraj Tandon
(N)
Gerardo Villareal
(G)
Agnes S Wallbom
(AS)
John M Wells
(JM)
Jeffrey C Whittle
(JC)
Mary A Whooley
(MA)
Peter W Wilson
(PW)
Yan V Sun
(YV)
Junzhe Xu
(J)
Shing-Shing Yeh
(SS)
Todd Connor
(T)
Dean P Argyres
(DP)
Elizabeth R Hauser
(ER)
Jean C Beckham
(JC)
Brady Stephens
(B)
Samuel M Aguayo
(SM)
Sunil K Ahuja
(SK)
Saiju Pyarajan
(S)
Kelly Cho
(K)
J Michael Gaziano
(JM)
Scott Kinlay
(S)
Xuan-Mai T Nguyen
(XT)
Jessica V Brewer
(JV)
Mary T Brophy
(MT)
Nhan V Do
(NV)
Donald E Humphries
(DE)
Luis E Selva
(LE)
Shahpoor Shayan
(S)
Stacey B Whitbourne
(SB)
Jim L Breeling
(JL)
J P Casas Romero
(JPC)
Rachel B Ramoni
(RB)
Références
Harris, R., Harman, D. J., Card, T. R., Aithal, G. P. & Guha, I. N. Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol. Hepatol. 2, 288–297 (2017).
pubmed: 28404158
doi: 10.1016/S2468-1253(16)30205-9
Namjou, B. et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 17, 135–135 (2019).
pubmed: 31311600
pmcid: 6636057
doi: 10.1186/s12916-019-1364-z
Fouad, Y. et al. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int. 40, 1254–1261 (2020).
pubmed: 32301554
doi: 10.1111/liv.14478
Eslam, M., Sanyal, A. J. & George, J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).
pubmed: 32044314
doi: 10.1053/j.gastro.2019.11.312
Tilg, H. & Effenberger, M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat. Rev. Gastroenterol. Hepatol. 17, 387–388 (2020).
Motamed, N. et al. Non-alcoholic fatty liver disease (NAFLD) and 10-year risk of cardiovascular diseases. Clin. Res. Hepatol. Gastroenterol. 41, 31–38 (2017).
pubmed: 27597641
doi: 10.1016/j.clinre.2016.07.005
Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–8 (2015).
pubmed: 26482880
doi: 10.1038/ng.3417
Wei, L. et al. Genetic variation in FCER1A predicts peginterferon alfa-2a-induced hepatitis B surface antigen clearance in East Asian patients with chronic hepatitis B. J. Viral Hepat. 26, 1040–1049 (2019).
pubmed: 30972912
de Boer, Y. S. et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147, 443–52.e5 (2014).
doi: 10.1053/j.gastro.2014.04.022
pubmed: 24768677
Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43, 1131 (2011).
pubmed: 22001757
pmcid: 3482372
doi: 10.1038/ng.970
Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43, 1131–8 (2011).
pubmed: 22001757
pmcid: 3482372
doi: 10.1038/ng.970
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Elliott, P. et al. The Airwave Health Monitoring Study of police officers and staff in Great Britain: rationale, design and methods. Environ. Res. 134, 280–5 (2014).
pubmed: 25194498
doi: 10.1016/j.envres.2014.07.025
Pinero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015).
pubmed: 25877637
pmcid: 4397996
doi: 10.1093/database/bav028
Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).
pubmed: 27924018
doi: 10.1093/nar/gkw943
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).
pubmed: 28818916
doi: 10.1126/science.aan2507
Jiménez-Marín, Á., Collado-Romero, M., Ramirez-Boo, M., Arce, C. & Garrido, J. J. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc. 3, S6–S6 (2009).
pubmed: 19615119
pmcid: 2712749
doi: 10.1186/1753-6561-3-S4-S6
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830
doi: 10.1038/ncomms6890
van Beek, J. H. D. A. et al. Heritability of liver enzyme levels estimated from genome-wide SNP data. Eur. J. Hum. Genet. 23, 1223–1228 (2015).
pubmed: 25424715
doi: 10.1038/ejhg.2014.259
Zhu, Y., Liu, H., Zhang, M. & Guo, G. L. Fatty liver diseases, bile acids, and FXR. Acta Pharm. Sin. B 6, 409–412 (2016).
pubmed: 27709009
pmcid: 5045552
doi: 10.1016/j.apsb.2016.07.008
Armstrong, L. E. & Guo, G. L. Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Curr. Pharmacol. Rep. 3, 92–100 (2017).
pubmed: 28983452
pmcid: 5624538
doi: 10.1007/s40495-017-0085-2
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
pubmed: 24097068
pmcid: 3838666
doi: 10.1038/ng.2797
Kilpelainen, T. O. et al. Interaction of single nucleotide polymorphisms in ADRB2, ADRB3, TNF, IL6, IGF1R, LIPC, LEPR, and GHRL with physical activity on the risk of type 2 diabetes mellitus and changes in characteristics of the metabolic syndrome: the Finnish Diabetes Prevention Study. Metabolism 57, 428–36 (2008).
pubmed: 18249219
doi: 10.1016/j.metabol.2007.10.022
Kneeman, J. M., Misdraji, J. & Corey, K. E. Secondary causes of nonalcoholic fatty liver disease. Ther. Adv. Gastroenterol. 5, 199–207 (2012).
doi: 10.1177/1756283X11430859
Haarhaus, M., Brandenburg, V., Kalantar-Zadeh, K., Stenvinkel, P. & Magnusson, P. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 13, 429–442 (2017).
pubmed: 28502983
doi: 10.1038/nrneph.2017.60
Anstee, Q. M. et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort☆. J. Hepatol. 73, 505–515 (2020).
pubmed: 32298765
doi: 10.1016/j.jhep.2020.04.003
Namjou, B. et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 17, 135 (2019).
pubmed: 31311600
pmcid: 6636057
doi: 10.1186/s12916-019-1364-z
Srivastava, A. Progressive familial intrahepatic cholestasis. J. Clin. Exp. Hepatol. 4, 25–36 (2014).
pubmed: 25755532
doi: 10.1016/j.jceh.2013.10.005
Strnad, P. et al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant increases the risk to develop liver cirrhosis. Gut 68, 1099–1107 (2019).
pubmed: 30068662
doi: 10.1136/gutjnl-2018-316228
Elliott, P. & Peakman, T. C. The U.K. Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–44 (2008).
pubmed: 18381398
doi: 10.1093/ije/dym276
UK Biobank Coordinating Centre. UK Biobank: protocol for a large-scale prospective epidemiological resource. Protocol No: UKBB-PROT-09-06 (Main Phase). (21 March 2007 (AMENDMENT ONE FINAL). http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf (2007).
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Ikram, M. A. et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur. J. Epidemiol. 35, 483–517 (2020).
pubmed: 32367290
pmcid: 7250962
doi: 10.1007/s10654-020-00640-5
Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–80 (2015).
pubmed: 25502107
doi: 10.1093/ije/dyu229
Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–23 (2016).
pubmed: 26441289
doi: 10.1016/j.jclinepi.2015.09.016
Rantakallio, P. The longitudinal study of the northern Finland birth cohort of 1966. Paediatr. Perinat. Epidemiol. 2, 59–88 (1988).
pubmed: 2976931
doi: 10.1111/j.1365-3016.1988.tb00180.x
Sovio, U. et al. Genetic determinants of height growth assessed longitudinally from infancy to adulthood in the northern Finland birth cohort 1966. PLoS Genet. 5, e1000409–e1000409 (2009).
pubmed: 19266077
pmcid: 2646138
doi: 10.1371/journal.pgen.1000409
Fry, D. A., R., Moffat, S., Gordon, M. & Singh, P. U.K. Biobank Biomarker Project; Companion Document to Accompany Serum BiomarkerData (11 March 2019). http://biobank.ctsu.ox.ac.uk/crystal/docs/serum_biochemistry.pdf (2019).
Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).
pubmed: 29254930
doi: 10.1161/CIRCULATIONAHA.117.030898
UK Biobank. Genotype imputation and genetic association studies of UK Biobank: Interim Data Release (May 2015). http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/imputation_documentation_May2015.pdf (2015).
Clare Bycroft, C. F. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/166298 (2017).
Bycroft, C. et al. The U.K. Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–90 (2015).
pubmed: 25642633
pmcid: 4342297
doi: 10.1038/ng.3190
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–5 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–75 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670
doi: 10.1093/nar/gkw1133
Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
doi: 10.1093/bioinformatics/btw613
pubmed: 27663502
Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. 13, 307–8 (2015).
pubmed: 26484569
pmcid: 4692118
doi: 10.1089/bio.2015.29031.hmm
Human Genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–60 (2015).
doi: 10.1126/science.1262110
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
QIAGEN Silicon Valley (Ingenuity Systems). Calculating and interpreting the p-values for functions, pathways and lists in IPA. https://www.ingenuity.com/wp-content/themes/ingenuity-qiagen/pdf/ipa/functions-pathways-pval-whitepaper.pdf (2016).
Davey Smith, G. & Ebrahim, S. Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).
doi: 10.1093/ije/dyg070
Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
pubmed: 26343387
pmcid: 4589895
doi: 10.1038/ng.3396
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354
pmcid: 5968830
doi: 10.1038/s41588-018-0058-3
Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–21 (2014).
pubmed: 24656865
pmcid: 3980413
doi: 10.1016/j.ajhg.2014.02.012
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30–42 (2017).
pubmed: 27749700
doi: 10.1097/EDE.0000000000000559