Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 05 2021
Historique:
received: 13 07 2020
accepted: 05 02 2021
entrez: 11 5 2021
pubmed: 12 5 2021
medline: 3 6 2021
Statut: epublish

Résumé

Serum concentration of hepatic enzymes are linked to liver dysfunction, metabolic and cardiovascular diseases. We perform genetic analysis on serum levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) using data on 437,438 UK Biobank participants. Replication in 315,572 individuals from European descent from the Million Veteran Program, Rotterdam Study and Lifeline study confirms 517 liver enzyme SNPs. Genetic risk score analysis using the identified SNPs is strongly associated with serum activity of liver enzymes in two independent European descent studies (The Airwave Health Monitoring study and the Northern Finland Birth Cohort 1966). Gene-set enrichment analysis using the identified SNPs highlights involvement in liver development and function, lipid metabolism, insulin resistance, and vascular formation. Mendelian randomization analysis shows association of liver enzyme variants with coronary heart disease and ischemic stroke. Genetic risk score for elevated serum activity of liver enzymes is associated with higher fat percentage of body, trunk, and liver and body mass index. Our study highlights the role of molecular pathways regulated by the liver in metabolic disorders and cardiovascular disease.

Identifiants

pubmed: 33972514
doi: 10.1038/s41467-021-22338-2
pii: 10.1038/s41467-021-22338-2
pmc: PMC8110798
doi:

Substances chimiques

gamma-Glutamyltransferase EC 2.3.2.2
Alanine Transaminase EC 2.6.1.2
Alkaline Phosphatase EC 3.1.3.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2579

Subventions

Organisme : NIDDK NIH HHS
ID : R56 DK101478
Pays : United States
Organisme : Medical Research Council
ID : MR/R0265051/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : K23 DK115897
Pays : United States
Organisme : Department of Health
Pays : United Kingdom
Organisme : British Heart Foundation
ID : SP/13/2/30111
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S019669/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL087679
Pays : United States
Organisme : Medical Research Council
ID : MR/R023484/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : RL1 MH083268
Pays : United States
Organisme : Medical Research Council
ID : MR/L01341X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R026505/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S03658X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L01632X/1
Pays : United Kingdom

Investigateurs

H Marike Boezen (HM)
Lude Franke (L)
Pim van der Harst (P)
Gerjan Navis (G)
Marianne Rots (M)
Morris Swertz (M)
Bruce H R Wolffenbuttel (BHR)
Cisca Wijmenga (C)
Zuhair K Ballas (ZK)
Sujata Bhushan (S)
Edward J Boyko (EJ)
David M Cohen (DM)
John Concato (J)
Michaela Aslan (M)
Hongyu Zhao (H)
Joseph I Constans (JI)
Louis J Dellitalia (LJ)
Joseph M Fayad (JM)
Ronald S Fernando (RS)
Hermes J Florez (HJ)
Melinda A Gaddy (MA)
Saib S Gappy (SS)
Gretchen Gibson (G)
Michael Godschalk (M)
Jennifer A Greco (JA)
Samir Gupta (S)
Salvador Gutierrez (S)
Kimberly D Hammer (KD)
Mark B Hamner (MB)
John B Harley (JB)
Adriana M Hung (AM)
Mostaqul Huq (M)
Robin A Hurley (RA)
Pran R Iruvanti (PR)
Douglas J Ivins (DJ)
Frank J Jacono (FJ)
Darshana N Jhala (DN)
Laurence S Kaminsky (LS)
Jon B Klein (JB)
Suthat Liangpunsakul (S)
Jack H Lichy (JH)
Jennifer Moser (J)
Grant D Huang (GD)
Sumitra Muralidhar (S)
Stephen M Mastorides (SM)
Roy O Mathew (RO)
Kristin M Mattocks (KM)
Rachel McArdle (R)
Paul N Meyer (PN)
Laurence J Meyer (LJ)
Jonathan P Moorman (JP)
Timothy R Morgan (TR)
Maureen Murdoch (M)
Olaoluwa O Okusaga (OO)
Kris-Ann K Oursler (KK)
Nora R Ratcliffe (NR)
Michael I Rauchman (MI)
R Brooks Robey (RB)
George W Ross (GW)
Richard J Servatius (RJ)
Satish C Sharma (SC)
Scott E Sherman (SE)
Elif Sonel (E)
Peruvemba Sriram (P)
Todd Stapley (T)
Robert T Striker (RT)
Neeraj Tandon (N)
Gerardo Villareal (G)
Agnes S Wallbom (AS)
John M Wells (JM)
Jeffrey C Whittle (JC)
Mary A Whooley (MA)
Peter W Wilson (PW)
Yan V Sun (YV)
Junzhe Xu (J)
Shing-Shing Yeh (SS)
Todd Connor (T)
Dean P Argyres (DP)
Elizabeth R Hauser (ER)
Jean C Beckham (JC)
Brady Stephens (B)
Samuel M Aguayo (SM)
Sunil K Ahuja (SK)
Saiju Pyarajan (S)
Kelly Cho (K)
J Michael Gaziano (JM)
Scott Kinlay (S)
Xuan-Mai T Nguyen (XT)
Jessica V Brewer (JV)
Mary T Brophy (MT)
Nhan V Do (NV)
Donald E Humphries (DE)
Luis E Selva (LE)
Shahpoor Shayan (S)
Stacey B Whitbourne (SB)
Jim L Breeling (JL)
J P Casas Romero (JPC)
Rachel B Ramoni (RB)

Références

Harris, R., Harman, D. J., Card, T. R., Aithal, G. P. & Guha, I. N. Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol. Hepatol. 2, 288–297 (2017).
pubmed: 28404158 doi: 10.1016/S2468-1253(16)30205-9
Namjou, B. et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 17, 135–135 (2019).
pubmed: 31311600 pmcid: 6636057 doi: 10.1186/s12916-019-1364-z
Fouad, Y. et al. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int. 40, 1254–1261 (2020).
pubmed: 32301554 doi: 10.1111/liv.14478
Eslam, M., Sanyal, A. J. & George, J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).
pubmed: 32044314 doi: 10.1053/j.gastro.2019.11.312
Tilg, H. & Effenberger, M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat. Rev. Gastroenterol. Hepatol. 17, 387–388 (2020).
Motamed, N. et al. Non-alcoholic fatty liver disease (NAFLD) and 10-year risk of cardiovascular diseases. Clin. Res. Hepatol. Gastroenterol. 41, 31–38 (2017).
pubmed: 27597641 doi: 10.1016/j.clinre.2016.07.005
Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–8 (2015).
pubmed: 26482880 doi: 10.1038/ng.3417
Wei, L. et al. Genetic variation in FCER1A predicts peginterferon alfa-2a-induced hepatitis B surface antigen clearance in East Asian patients with chronic hepatitis B. J. Viral Hepat. 26, 1040–1049 (2019).
pubmed: 30972912
de Boer, Y. S. et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147, 443–52.e5 (2014).
doi: 10.1053/j.gastro.2014.04.022 pubmed: 24768677
Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43, 1131 (2011).
pubmed: 22001757 pmcid: 3482372 doi: 10.1038/ng.970
Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43, 1131–8 (2011).
pubmed: 22001757 pmcid: 3482372 doi: 10.1038/ng.970
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Elliott, P. et al. The Airwave Health Monitoring Study of police officers and staff in Great Britain: rationale, design and methods. Environ. Res. 134, 280–5 (2014).
pubmed: 25194498 doi: 10.1016/j.envres.2014.07.025
Pinero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015).
pubmed: 25877637 pmcid: 4397996 doi: 10.1093/database/bav028
Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).
pubmed: 27924018 doi: 10.1093/nar/gkw943
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).
pubmed: 28818916 doi: 10.1126/science.aan2507
Jiménez-Marín, Á., Collado-Romero, M., Ramirez-Boo, M., Arce, C. & Garrido, J. J. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc. 3, S6–S6 (2009).
pubmed: 19615119 pmcid: 2712749 doi: 10.1186/1753-6561-3-S4-S6
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830 doi: 10.1038/ncomms6890
van Beek, J. H. D. A. et al. Heritability of liver enzyme levels estimated from genome-wide SNP data. Eur. J. Hum. Genet. 23, 1223–1228 (2015).
pubmed: 25424715 doi: 10.1038/ejhg.2014.259
Zhu, Y., Liu, H., Zhang, M. & Guo, G. L. Fatty liver diseases, bile acids, and FXR. Acta Pharm. Sin. B 6, 409–412 (2016).
pubmed: 27709009 pmcid: 5045552 doi: 10.1016/j.apsb.2016.07.008
Armstrong, L. E. & Guo, G. L. Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Curr. Pharmacol. Rep. 3, 92–100 (2017).
pubmed: 28983452 pmcid: 5624538 doi: 10.1007/s40495-017-0085-2
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
pubmed: 24097068 pmcid: 3838666 doi: 10.1038/ng.2797
Kilpelainen, T. O. et al. Interaction of single nucleotide polymorphisms in ADRB2, ADRB3, TNF, IL6, IGF1R, LIPC, LEPR, and GHRL with physical activity on the risk of type 2 diabetes mellitus and changes in characteristics of the metabolic syndrome: the Finnish Diabetes Prevention Study. Metabolism 57, 428–36 (2008).
pubmed: 18249219 doi: 10.1016/j.metabol.2007.10.022
Kneeman, J. M., Misdraji, J. & Corey, K. E. Secondary causes of nonalcoholic fatty liver disease. Ther. Adv. Gastroenterol. 5, 199–207 (2012).
doi: 10.1177/1756283X11430859
Haarhaus, M., Brandenburg, V., Kalantar-Zadeh, K., Stenvinkel, P. & Magnusson, P. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 13, 429–442 (2017).
pubmed: 28502983 doi: 10.1038/nrneph.2017.60
Anstee, Q. M. et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort☆. J. Hepatol. 73, 505–515 (2020).
pubmed: 32298765 doi: 10.1016/j.jhep.2020.04.003
Namjou, B. et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 17, 135 (2019).
pubmed: 31311600 pmcid: 6636057 doi: 10.1186/s12916-019-1364-z
Srivastava, A. Progressive familial intrahepatic cholestasis. J. Clin. Exp. Hepatol. 4, 25–36 (2014).
pubmed: 25755532 doi: 10.1016/j.jceh.2013.10.005
Strnad, P. et al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant increases the risk to develop liver cirrhosis. Gut 68, 1099–1107 (2019).
pubmed: 30068662 doi: 10.1136/gutjnl-2018-316228
Elliott, P. & Peakman, T. C. The U.K. Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–44 (2008).
pubmed: 18381398 doi: 10.1093/ije/dym276
UK Biobank Coordinating Centre. UK Biobank: protocol for a large-scale prospective epidemiological resource. Protocol No: UKBB-PROT-09-06 (Main Phase). (21 March 2007 (AMENDMENT ONE FINAL). http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf (2007).
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Ikram, M. A. et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur. J. Epidemiol. 35, 483–517 (2020).
pubmed: 32367290 pmcid: 7250962 doi: 10.1007/s10654-020-00640-5
Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–80 (2015).
pubmed: 25502107 doi: 10.1093/ije/dyu229
Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–23 (2016).
pubmed: 26441289 doi: 10.1016/j.jclinepi.2015.09.016
Rantakallio, P. The longitudinal study of the northern Finland birth cohort of 1966. Paediatr. Perinat. Epidemiol. 2, 59–88 (1988).
pubmed: 2976931 doi: 10.1111/j.1365-3016.1988.tb00180.x
Sovio, U. et al. Genetic determinants of height growth assessed longitudinally from infancy to adulthood in the northern Finland birth cohort 1966. PLoS Genet. 5, e1000409–e1000409 (2009).
pubmed: 19266077 pmcid: 2646138 doi: 10.1371/journal.pgen.1000409
Fry, D. A., R., Moffat, S., Gordon, M. & Singh, P. U.K. Biobank Biomarker Project; Companion Document to Accompany Serum BiomarkerData (11 March 2019). http://biobank.ctsu.ox.ac.uk/crystal/docs/serum_biochemistry.pdf (2019).
Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).
pubmed: 29254930 doi: 10.1161/CIRCULATIONAHA.117.030898
UK Biobank. Genotype imputation and genetic association studies of UK Biobank: Interim Data Release (May 2015). http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/imputation_documentation_May2015.pdf (2015).
Clare Bycroft, C. F. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/166298 (2017).
Bycroft, C. et al. The U.K. Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–90 (2015).
pubmed: 25642633 pmcid: 4342297 doi: 10.1038/ng.3190
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–5 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–75 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670 doi: 10.1093/nar/gkw1133
Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
doi: 10.1093/bioinformatics/btw613 pubmed: 27663502
Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. 13, 307–8 (2015).
pubmed: 26484569 pmcid: 4692118 doi: 10.1089/bio.2015.29031.hmm
Human Genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–60 (2015).
doi: 10.1126/science.1262110
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
QIAGEN Silicon Valley (Ingenuity Systems). Calculating and interpreting the p-values for functions, pathways and lists in IPA. https://www.ingenuity.com/wp-content/themes/ingenuity-qiagen/pdf/ipa/functions-pathways-pval-whitepaper.pdf (2016).
Davey Smith, G. & Ebrahim, S. Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).
doi: 10.1093/ije/dyg070
Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
pubmed: 26343387 pmcid: 4589895 doi: 10.1038/ng.3396
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354 pmcid: 5968830 doi: 10.1038/s41588-018-0058-3
Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–21 (2014).
pubmed: 24656865 pmcid: 3980413 doi: 10.1016/j.ajhg.2014.02.012
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30–42 (2017).
pubmed: 27749700 doi: 10.1097/EDE.0000000000000559

Auteurs

Raha Pazoki (R)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK. raha.pazoki@brunel.ac.uk.
Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK. raha.pazoki@brunel.ac.uk.

Marijana Vujkovic (M)

Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Joshua Elliott (J)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
Royal Surrey County Hospital, Guildford, Surrey, UK.

Evangelos Evangelou (E)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.

Dipender Gill (D)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.

Mohsen Ghanbari (M)

Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Peter J van der Most (PJ)

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Rui Climaco Pinto (RC)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
UK Dementia Research Institute, Imperial College London, London, UK.

Matthias Wielscher (M)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Matthias Farlik (M)

Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Verena Zuber (V)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.

Robert J de Knegt (RJ)

Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Harold Snieder (H)

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

André G Uitterlinden (AG)

Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Julie A Lynch (JA)

VA Salt Lake City Health Care System, Salt Lake City, UT, USA.
University of Massachusetts, Boston, MA, USA.

Xiyun Jiang (X)

Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.

Saredo Said (S)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.

David E Kaplan (DE)

Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Kyung Min Lee (KM)

VA Salt Lake City Health Care System, Salt Lake City, UT, USA.
School of Medicine, University of Utah, Salt Lake City, UT, USA.

Marina Serper (M)

Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Rotonya M Carr (RM)

Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Philip S Tsao (PS)

VA Palo Alto Health Care System, Palo Alto, CA, USA.
School of Medicine, Stanford University, Stanford, CA, USA.

Stephen R Atkinson (SR)

Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK.

Abbas Dehghan (A)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
UK Dementia Research Institute, Imperial College London, London, UK.

Ioanna Tzoulaki (I)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.

M Arfan Ikram (MA)

Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Karl-Heinz Herzig (KH)

Institute of Biomedicine, Medical Research Center Oulu, Oulu University, Oulu, Finland.
Oulu University Hospital, Oulu, Finland.
Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland.

Marjo-Riitta Järvelin (MR)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK.
Center for Life Course Health Research, Faculty of Medicine, Oulu University, Oulu, Finland.
Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
Unit of Primary Care, Oulu University Hospital, Oulu, Finland.

Behrooz Z Alizadeh (BZ)

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Christopher J O'Donnell (CJ)

VA Boston Healthcare System, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.
Brigham Women's Hospital, Boston, MA, USA.

Danish Saleheen (D)

Departments of Medicine and Cardiology, Columbia University, New York City, NY, USA.

Benjamin F Voight (BF)

Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Kyong-Mi Chang (KM)

Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Mark R Thursz (MR)

Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK.

Paul Elliott (P)

Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, London, UK. p.elliott@imperial.ac.uk.
British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK. p.elliott@imperial.ac.uk.
UK Dementia Research Institute, Imperial College London, London, UK. p.elliott@imperial.ac.uk.
National Institute for Health Research, Imperial Biomedical Research Centre, Imperial College London, London, UK. p.elliott@imperial.ac.uk.
Health Data Research UK at Imperial College London, London, UK. p.elliott@imperial.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH