The identification of activity of choroidal neovascularization complicating angioid streaks.
Journal
Eye (London, England)
ISSN: 1476-5454
Titre abrégé: Eye (Lond)
Pays: England
ID NLM: 8703986
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
10
12
2020
accepted:
13
04
2021
revised:
07
03
2021
pubmed:
12
5
2021
medline:
30
4
2022
entrez:
11
5
2021
Statut:
ppublish
Résumé
To inspect the inter-reader agreement of different diagnostic modalities in identifying choroidal neovascularization (CNV) activity secondary to angioid streaks (AS) and to analyze the prevalence of subretinal hyper-reflective material (SHRM) in active CNV. Retrospective study of patients with AS with active CNV; optical coherence tomography (OCT), OCT angiography (OCTA), fundus fluorescein angiography (FFA), and indocyanine green angiography (ICGA) from each patient were collected. Agreement between two readers using different diagnostic modalities is presented as free-marginal kappa (k) and 95% confidence interval (CI). This study included 19 eyes of 12 patients with active CNV (5 naive and 14 previously treated). Agreement among readers on CNV activity was excellent for OCT (k =0.88; 95% CI 0.71-1.00), good for FFA (k = 0.70; 95% CI 0.46-0.94) and ICGA (k = 0.58; 95% CI 0.31-0.84), and poor using OCTA (k = 0.39; 95% CI 0.11-0.68). SHRM was the most common OCT finding associated with active CNV (100%); fuzzy borders were present in 53% of SHRM cases at baseline. Identification of CNV activity in AS is challenging; OCT was the best modality to inspect active CNV. The identification of SHRM contributed to recognizing active CNV. Further studies are needed to assess the role of SHRM in anticipating prognosis and guiding treatment of CNV secondary to AS.
Identifiants
pubmed: 33972707
doi: 10.1038/s41433-021-01555-5
pii: 10.1038/s41433-021-01555-5
pmc: PMC9046182
doi:
Substances chimiques
Coloring Agents
0
Indocyanine Green
IX6J1063HV
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1027-1033Informations de copyright
© 2021. The Author(s), under exclusive licence to The Royal College of Ophthalmologists.
Références
Clarkson JG, Altman RD. Angioid streaks. Surv Ophthalmol. 1982;26:235–46.
doi: 10.1016/0039-6257(82)90158-8
Marchese A, Rabiolo A, Corbelli E, Carnevali A, Cicinelli MV, Giuffre C, et al. Ultra-widefield imaging in patients with angioid streaks secondary to pseudoxanthoma elasticum. Ophthalmol Retin. 2017;1:137–44.
doi: 10.1016/j.oret.2016.10.005
Mansour AM, Shields JA, Annesley WH Jr., el-Baba F, Tasman W, Tomer TL. Macular degeneration in angioid streaks. Ophthalmologica. 1988;197:36–41.
doi: 10.1159/000309915
Singerman LJ, Hatem G. Laser treatment of choroidal neovascular membranes in angioid streaks. Retina. 1981;1:75–83.
doi: 10.1097/00006982-198101020-00001
Battaglia Parodi M, Iacono P, La Spina C, Berchicci L, Scotti F, Leys A, et al. Intravitreal bevacizumab for nonsubfoveal choroidal neovascularization associated with angioid streaks. Am J Ophthalmol. 2014;157:374–7.
doi: 10.1016/j.ajo.2013.10.015
Pece A, Avanza P, Introini U, Brancato R. Indocyanine green angiography in angioid streaks. Acta Ophthalmol Scand. 1997;75:261–5.
doi: 10.1111/j.1600-0420.1997.tb00769.x
Pokroy R, Mimouni M, Barayev E, Segev F, Geffen N, Nemet AY, et al. Prognostic value of subretinal hyperreflective material in neovascular age-related macular degeneration treated with bevacizumab. Retina. 2018;38:1485–91.
doi: 10.1097/IAE.0000000000001748
Willoughby AS, Ying GS, Toth CA, Maguire MG, Burns RE, Grunwald JE, et al. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2015;122:1846–53.
doi: 10.1016/j.ophtha.2015.05.042
Casalino G, Bandello F, Chakravarthy U. Changes in neovascular lesion hyperreflectivity after anti-VEGF treatment in age-related macular degeneration: an integrated multimodal imaging analysis. Investig Ophthalmol Vis Sci. 2016;57:288–298.
doi: 10.1167/iovs.15-18753
Giani A, Luiselli C, Esmaili DD, Salvetti P, Cigada M, Miller JW, et al. Spectral-domain optical coherence tomography as an indicator of fluorescein angiography leakage from choroidal neovascularization. Investig Ophthalmol Vis Sci. 2011;52:5579–86.
doi: 10.1167/iovs.10-6617
Coscas F, Lupidi M, Boulet JF, Sellam A, Cabral D, Serra R, et al. Optical coherence tomography angiography in exudative age-related macular degeneration: a predictive model for treatment decisions. Br J Ophthalmol. 2019;103:1342–6.
doi: 10.1136/bjophthalmol-2018-313065
Corbelli E, Carnevali A, Marchese A, Cicinelli MV, Querques L, Sacconi R, et al. Optical coherence tomography angiography features of angioid streaks. Retina. 2018;38:2128–36.
doi: 10.1097/IAE.0000000000001859
Battaglia Parodi M, Romano F, Marchese A, Arrigo A, Llorenc V, Cicinelli MV, et al. Anti-VEGF treatment for choroidal neovascularization complicating pattern dystrophy-like deposit associated with pseudoxanthoma elasticum. Graefes Arch Clin Exp Ophthalmol. 2019;257:273–8.
doi: 10.1007/s00417-018-4190-7
Zweifel SA, Imamura Y, Freund KB, Spaide RF. Multimodal fundus imaging of pseudoxanthoma elasticum. Retina. 2011;31:482–91.
doi: 10.1097/IAE.0b013e3181f056ce
Marchese A, Parravano M, Rabiolo A, Carnevali A, Corbelli E, Cicinelli MV, et al. Optical coherence tomography analysis of evolution of Bruch’s membrane features in angioid streaks. Eye. 2017;31:1600–5.
doi: 10.1038/eye.2017.112
Ellabban AA, Hangai M, Yamashiro K, Nakagawa S, Tsujikawa A, Yoshimura N. Tomographic fundus features in pseudoxanthoma elasticum: comparison with neovascular age-related macular degeneration in Japanese patients. Eye. 2012;26:1086–94.
doi: 10.1038/eye.2012.101
Marchese A, Romano F, Cicinelli MV, Bandello F, Battaglia Parodi M. Chorioretinal punched-out lesions in pseudoxanthoma elasticum. Retina. 2018;38:e43–4.
doi: 10.1097/IAE.0000000000002052
Gliem M, Birtel J, Muller PL, Hendig D, Faust I, Herrmann P, et al. Acute retinopathy in pseudoxanthoma elasticum. JAMA Ophthalmol. 2019;137:1165–73.
doi: 10.1001/jamaophthalmol.2019.2910
Romano F, Mercuri S, Arrigo A, Marchese A, Cicinelli MV, Albertini GC, et al. Identification of hyperreflective foci in angioid streaks. Eye. 2019;33:1916–23.
doi: 10.1038/s41433-019-0483-2
Parodi MB, Arrigo A, Romano F, Aragona E, Marchese A, Cicinelli MV, et al. Hyperreflective foci number correlates with choroidal neovascularization activity in angioid streaks. Investig Ophthalmol Vis Sci. 2018;59:3314–9.
doi: 10.1167/iovs.18-24291
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22:276–82.
doi: 10.11613/BM.2012.031
Lai TYY, Staurenghi G, Lanzetta P, Holz FG, Melissa Liew SH, Desset-Brethes S, et al. Efficacy and safety of ranibizumab for the treatment of choroidal neovascularization due to uncommon cause: twelve-month results of the MINERVA study. Retina. 2018;38:1464–77.
doi: 10.1097/IAE.0000000000001744
Parodi MB, Iacono P, Bandello F. Juxtafoveal choroidal neovascularization secondary to persistent placoid maculopathy treated with intravitreal bevacizumab. Ocul Immunol Inflamm. 2010;18:399–401.
doi: 10.3109/09273948.2010.483316
Gliem M, Birtel J, Herrmann P, Fimmers R, Berger M, Coch C, et al. Aflibercept for choroidal neovascularizations secondary to pseudoxanthoma elasticum: a prospective study. Graefes Arch Clin Exp Ophthalmol. 2020;258:311–8.
doi: 10.1007/s00417-019-04551-4
Parodi MB, Cicinelli MV, Marchese A, Giuffre C, Viola F, Staurenghi G, et al. Intravitreal aflibercept for management of choroidal neovascularization secondary to angioid streaks: The Italian EYLEA-STRIE study. Eur J Ophthalmol. 2020:1120672120928305.
Casalino G, Stevenson MR, Bandello F, Chakravarthy U. Tomographic biomarkers predicting progression to fibrosis in treated neovascular age-related macular degeneration: a multimodal imaging study. Ophthalmol Retin. 2018;2:451–61.
doi: 10.1016/j.oret.2017.08.019